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Motivation: Intrinsic Variable Importance

How can we define / learn the importance of each covariate X j with
respect to an outcome y?

X y
� Try to study their relationship using a ML model:

pm ∈ argmin
f∈F

pE [L (f (X ),y)] . (1)
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Motivation: Intrinsic Variable Importance

How can we define / learn the importance of each covariate X j with
respect to an outcome y?

X y= m(X )+ ε ∈ R
� Try to study their relationship using a ML model:

pm ∈ argmin
f∈F

pE
[
(f (X )−y)2

]
. (2)
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Problematic

Goals for a VI measure:
� statistically valid
� model-agnostic
� computationally feasible
� conditional approach

Main challenges:

� non-linearity
� high-dimensionality
� correlation

⌢ Current approaches do not offer sufficient statistical guarantees
and do not work in these complex settings.
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Standard approaches

The importance of j , ψ(j ,P0), is usually obtained by:

Predictability
using the covariate j VS

Predictability
without the covariate j

Approaches to measure the predictability without j (Covert et al.
(2021) JMLR):

• Removal-based: They refit a model pm−j to regress y given X−j (for
example LOCO and Shapley values)

• Permutation-based: They break the relationship between y and
X−j reusing pm (for example PFI and CPI)
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Leave One Covariate Out (LOCO)

It is defined as the plug-in estimate of (m−j(X−j) := E
[
y |X−j])

ψLOCO(j ,P0) = E
[
(y −m−j(X−j))2

]
−E

[
(y −m(X ))2

]
.

✓ It estimates the unnormalized Total Sobol Index (E
[
V(y |X−j)

]
).

✓ Type-I error control (Williamson et al. (2021) JASA).
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It is defined as the plug-in estimate of (m−j(X−j) := E
[
y |X−j])

ψLOCO(j ,P0) = E
[
(y −m−j(X−j))2

]
−E

[
(y −m(X ))2

]
.

✓ It estimates the unnormalized Total Sobol Index (E
[
V(y |X−j)

]
).

✓ Type-I error control (Williamson et al. (2021) JASA).
× In practice: instability and invalid null hypothesis testing.

Figure 1: In green, pψLOCO for two null covariates (p = 50,
y = X0X11X2>0 +2X3X41X2<0 and X ∼ N (1,Σ) with Σi ,j = 0.6|i−j |).
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Permutation Feature Importance(PFI)

It is given by:

pψPFI(j ,P0) =
1

ntest

ntest

∑
i=1

(
(yi − pm(x (j)

i ))2 − (yi − pm(xi))
2
)
. (3)

where the j-th covariate is permuted.
It tries to estimate

ψPFI(j ,P0) := E
[
(y −m(X (j)))2

]
−E

[
(y −m(X ))2

]
,

where X (j)−j = X−j ,X (j)j ⊥⊥ X−j ,y and X (j)j ∼ X j .
✓ Fast (no need to retrain pm).
× Extrapolation bias (Chamma et al. (2023) NeurIPS).
× Not an interesting theoretical quantity (Bénard et al (2022)

Biometrika).
� Instead of breaking the relationship of X j with X−j and y , we only

need to break it with y !
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Conditional Permutation Importance

(Chamma et al.(2023) NeurIPS) It is given by:

pψCPI(j ,P0) =
1

ntest

ntest

∑
i=1

(
(yi − pm(x̃ (j)

i ))2 − (yi − pm(xi))
2
)
, (4)

where the j-th covariate is conditionally permuted.
It tries to estimate

ψCPI(j ,P0) := E
[
(y −m(X̃ (j)))2

]
−E

[
(y −m(X ))2

]
,

where X̃ (j)−j = X−j , X̃ (j)j ⊥⊥ y |X−j and X̃ (j)j ∼ X j |X−j .
✓ Fast and stable in practice with type-I error control.
× Not an interesting theoretical quantity.
× No theoretical foundation on the conditional permutation.
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Conditional Permutation Importance

(Chamma et al.(2023) NeurIPS) It is given by:

pψCPI(j ,P0) =
1

ntest

ntest

∑
i=1

(
(yi − pm(x̃ (j)

i ))2 − (yi − pm(xi))
2
)
, (4)

where the j-th covariate is conditionally permuted.
It tries to estimate

ψCPI(j ,P0) := E
[
(y −m(X̃ (j)))2

]
−E

[
(y −m(X ))2

]
,

where X̃ (j)−j = X−j , X̃ (j)j ⊥⊥ y |X−j and X̃ (j)j ∼ X j |X−j .
✓ Fast and stable in practice with type-I error control.

Lemma 1 (Internship contribution)
ψCPI(j ,P0) = 2ψLOCO(j ,P0).
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An idea to permute conditionally on X−j
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Validity of the conditional sampling

In practice, we need to train a regressor pν−j of X j on X−j . Then,
for an x , we predict pν−j(x−j) and add a permuted residual
(x ′j −pν−j(x ′j)).

Assumption 1

X j = ν−j(X−j)+ ε with ε ⊥⊥ X−j .

Lemma 2 (Internship contribution)
Under Assumption 1 and assuming the consistency of pν−j , the
conditional step of the CPI, presented in Chamma et al.(2023)
NeurIPS, is valid.
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Key intermediary takeaways

Removal-based approaches suffer from high variability.
Permutation-based approaches are faster and more stable.
It is possible to estimate LOCO using permutation approaches!
LOCO is heuristically used for variable selection.
They provide type-I error control and in practice it does not work.

Figure 2: Setting: y = X0X11X2>0 +2X3X41X2<0 and X ∼ N (1,Σ) with
Σi ,j = ρ |i−j | and p = 50,n = 300. The black dotted line represents LOCO with
n = 100000. On the left two important covariates. On the right two null
covariates. On the x-axis, we vary the correlation ρ.
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Knockoffs framework(Candès et al. (2018) JRSS)

Knockoffs provide a framework for controlled variable selection (find
H1 := H c

0 ,H0 := {j : X j ⊥⊥ y |X−j}) combining three ingredients:
1 Knockoff variables (X̃ ): imitations of X that do not preserve the

relationship with y .
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Knockoffs provide a framework for controlled variable selection (find
H1 := H c

0 ,H0 := {j : X j ⊥⊥ y |X−j}) combining three ingredients:
1 Knockoff variables (X̃ ): imitations of X that do not preserve the

relationship with y .
2 Knockoffs statistics(W ∈ Rp): each coordinate Wj measures the

importance of each covariate j comparing the predictability of
original covariate with the knockoff covariate.

Example 3 (Lasso Coefficients Difference)

Regress y ∈ R on [X , X̃ ] ∈ R2p using LASSO and compute the
estimated coefficient difference: Wj = |pβj |− |pβj+p|.
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Knockoffs framework(Candès et al. (2018) JRSS)

Knockoffs provide a framework for controlled variable selection (find
H1 := H c

0 ,H0 := {j : X j ⊥⊥ y |X−j}) combining three ingredients:
1 Knockoff variables (X̃ ): imitations of X that do not preserve the

relationship with y .
2 Knockoffs statistics(W ∈ Rp): each coordinate Wj measures the

importance of each covariate j comparing the predictability of
original covariate with the knockoff covariate.

3 Threshold: it is data-dependent and given by

T ⋆
q = min

{
t ∈ W :

1+#{j : Wj ≤−t}
#{j : Wj ≥ t}∨1

≤ q
}
. (5)

and +∞ if empty.
This procedure provides and FDR control!

FDP(pS) :=

∣∣∣pS∩H0

∣∣∣∣∣∣pS∣∣∣∨1
FDR(pS) := E

[
FDP(pS)

]
. (6)
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Some pitfalls of the procedure

Not easy to construct X̃ in practice. Candès et al. (2018) JRSS
assumed Gaussianity and they estimated the covariance matrix,
which does not work in high dimension (Blain et al.(2024)).

✓ [Internship contribution] We proposed a sequential algorithm
based on the CPI conditional sampling.
The most performing statistic is the LCD, which may not work in
highly non-linear settings.

✓ [Internship contribution] We proposed another statistic: the
Shapley-knockoffs.
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CPI-Knockoffs

We propose another procedure to control the FDR:
1 We construct X̃ in which each coordinate is conditionally sampled:

X̃ j = ν−j(X−j)+(X ′j −ν−j(X ′−j)).

2 We construct WCPI in which each coordinate is given by:

WCPI(X , X̃ ,y)j =
(

y − pm(X 1, . . ., X̃ j , . . . ,X p)
)2

−
(
y − pm(X )

)2
.

3 We apply the threshold T ⋆
q .

� Neither X̃ provides a knockoff variable, nor is WCPI a knockoff
statistic.

Theorem 3 (Internship contribution)
Under some mild assumptions, CPI-Knockoffs provides an FDR
control.
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On the assumptions

We need Assumption (1) on the covariates, consistency of pν−j and:

Assumption 2 (sign-flip property)

pm(X )− pm(X̃ (j))∼ ε j
(

pm(X )− pm(X̃ (j))
)
, with ε ∼ U ({1,−1}), j ∈ H0.
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Figure 3: Setting: y = X1 −X2 +2X3 +X4 −3X5, ntrain = 700,ntest = 300,
d = 5000 and X ∼ N (1,Σ) with Σi ,j = 0.6|i−j |. Each plot corresponds to a
specific coordinate.
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Take-home message

The main contributions of this internship:
We established the validity of the conditional sampling step.
We linked removal-based approaches with permutation-based
ones, providing more stable LOCO estimates: 0.5CPI and
RobustCPI.
We proposed a algorithm for constructing knockoff variables.
We introduced a new knockoff statistic: Shapley-knockoffs.
We proposed an efficient and parallelizable procedure that
controls FDR without the strong computational issues of the
knockoffs: CPI-knockoffs.
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Perspectives

Next steps:
Instead of controlling the FDR, it would be interesting to control
the FDP.
Perform numerical experiments to compare the performance of
the proposed methods with the state-of-the art methods.
Introduce grouping of the covariates to handle highly correlated
settings.
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Linear setting

On the assumption of symmetry of the difference
pm(X )− pm(X̃ (j))∼ pm(X̃ (j))− pm(X ) for j ∈ H0:
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Figure 4: y = X0 −X1 +2X2 +X3 −3X4, ntrain = 700,ntest = 300 and d = 500.
Each plot corresponds to a specific coordinate.
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Linear setting

Power across the individuals:
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Figure 5: y = X0 −X1 +2X2 +X3 −3X4, ntrain = 700,ntest = 300 and d = 500.
Each plot represents an individual. On the x-axis, we have the prediction
error made on the individual, and on the y -axis, the error made by changing a
coordinate using a conditionally independent sample. The red crosses stand
for the relevant covariates and the blue dots for the null covariates.
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Linear setting

Power by aggregating the individuals using the mean:
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Figure 6: y = X0 −X1 +2X2 +X3 −3X4, ntrain = 700,ntest = 300 and d = 500. It
represents the mean of the errors made across the individuals. On the x-axis,
we have the mean prediction error, and on the y -axis, the mean error made
by changing a coordinate using a conditionally independent sample.
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Linear setting

The distribution of the statistic on the null covariates:
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Figure 7: y = X0 −X1 +2X2 +X3 −3X4, ntrain = 700,ntest = 300 and d = 500. It
represents the histogram of the mean of difference between the errors made
across the individuals by using the original and a conditionally independent
sample on the null covariates.

Angel REYERO (Paris-Saclay University) Variable importance 30th of September 40 / 51



High dimensional linear setting

On the assumption of symmetry of the difference
pm(X )− pm(X̃ (j))∼ pm(X̃ (j))− pm(X ) for j ∈ H0:
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Figure 8: y = X0 −X1 +2X2 +X3 −3X4, ntrain = 700,ntest = 300 and d = 5000.
Each plot corresponds to a specific coordinate.

Angel REYERO (Paris-Saclay University) Variable importance 30th of September 41 / 51



High dimensional linear setting

Power across the individuals:
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Figure 9: y = X0 −X1 +2X2 +X3 −3X4, ntrain = 700,ntest = 300 and d = 5000.
Each plot represents an individual. On the x-axis, we have the prediction
error made on the individual, and on the y -axis, the error made by changing a
coordinate using a conditionally independent sample. The red crosses stand
for the relevant covariates and the blue dots for the null covariates.
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High dimensional linear setting

Power by aggregating the individuals using the mean:
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Figure 10: y = X0 −X1 +2X2 +X3 −3X4, ntrain = 700,ntest = 300 and
d = 5000. The figure represents the mean of the errors made across the
individuals. On the x-axis, we have the mean prediction error, and on the
y -axis, the mean error made by changing a coordinate using a conditionally
independent sample. On the right, the augmented figure.
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High dimensional linear setting

The distribution of the statistic on the null covariates:
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Figure 11: y = X0 −X1 +2X2 +X3 −3X4, ntrain = 700,ntest = 300 and
d = 5000. It represents the histogram of the mean of difference between the
errors made across the individuals by using the original and a conditionally
independent sample on the null covariates.
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Non-linear setting

On the assumption of symmetry of the difference
pm(X )− pm(X̃ (j))∼ pm(X̃ (j))− pm(X ) for j ∈ H0:
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Figure 12: y = X1X21X3>0 +2X4X51X3<0, ntrain = 700,ntest = 300, d = 500 and
X ∼ N (1,Σ) with Σi ,j = 0.6|i−j |. Each plot corresponds to a specific
coordinate.
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Non-linear setting

Power across the individuals:
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Figure 13: y = X1X21X3>0 +2X4X51X3<0, ntrain = 700,ntest = 300, d = 500 and
X ∼ N (1,Σ) with Σi ,j = 0.6|i−j |. Each plot represents an individual. On the
x-axis, we have the prediction error made on the individual, and on the
y -axis, the error made by changing a coordinate using a conditionally
independent sample. The red crosses stand for the relevant covariates and
the blue dots for the null covariates.
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Non-linear setting

Power by aggregating the individuals using the mean:

0.64 0.65 0.66 0.67 0.68 0.69 0.70
1
n

i
(Yi m(Xi))2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 n
i
(Y

i
m

(X
(j) i

))2

Unimportant
Important

0.64 0.65 0.66 0.67 0.68 0.69 0.70
1
n

i
(Yi m(Xi))2

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

1 n
i
(Y

i
m

(X
(j) i

))2

Unimportant
Important

Figure 14: y = X1X21X3>0 +2X4X51X3<0, ntrain = 700,ntest = 300, d = 500 and
X ∼ N (1,Σ) with Σi ,j = 0.6|i−j |. It represents the mean of the errors made
across the individuals. On the x-axis, we have the mean prediction error, and
on the y -axis, the mean error made by changing a coordinate using a
conditionally independent sample. The red crosses stand for the relevant
covariates and the blue dots for the null covariates.
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Non-linear setting

The distribution of the statistic on the null covariates:
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Figure 15: y = X1X21X3>0 +2X4X51X3<0, ntrain = 700,ntest = 300, d = 500 and
X ∼ N (1,Σ) with Σi ,j = 0.6|i−j |. It represents the histogram of the mean of
difference between the errors made across the individuals by using the
original and a conditionally independent sample on the null covariates.
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LOCO estimates: 0.5CPI

Definition 4 (0.5CPI)
Given a covariate j , a training sample of size ntrain and a test sample of
size ntest, we train the regressors pm and pν−j over the train set, we
compute the residuals over the test set, and the new LOCO estimate is
given by

pψ0.5CPI(j ,P0) =
1

2ntest

ntest

∑
i=1

(
(yi − pm(x̃ (j)

i ))2 − (yi − pm(xi))
2
)
.
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LOCO estimates: Robust-CPI

Definition 5 (Robust-CPI)
Given a train, test and calibration set, we define the Robust-CPI
estimate pψRobust−CPI(j ,P0) as

ncal

ncal +1

 1
ntest

ntest

∑
i=1

(
yi −

1
ncal

ncal

∑
k=1

pm(x̃ (j)
i ,k )

)2

−
(
yi − pm(xi)

)2

 , (7)

where x̃ (j)
i ,k is computed as:

x̃ (j),l
i ,k =

{
x l

i if l ̸= j
pν−j(x

−j
i )+

[
x j

k −pν−j(x
−j
k )
]

if l = j .
(8)
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