Linear classification with missing values

Internship Final Presentation Angel REYERO

M1 Mathematics & Artificial Intelligence Institut de Mathématiques d'Orsay (IMO) Paris-Saclay University

Under the supervision of: Alexis AYME, Claire BOYER, Aymeric DIEULEVEUT and Erwan SCORNET.

July 20, 2023

Angel REYERO (Paris-Saclay University)

Classification with NA

Contents

Introduction

- Motivation
- Problem formulation
- Related work

Linear discriminant analysis (LDA)

- Setting
- Approximation error introduced by missing data
- LDA estimation with missing values
- LDA estimation under sparsity assumptions
- Perceptron
- 5 Conclusions

B References

Index

Introduction

- Motivation
- Problem formulation
- 2 Related work
 - Linear discriminant analysis (LDA)
 - Setting
 - Approximation error introduced by missing data
 - LDA estimation with missing values
 - LDA estimation under sparsity assumptions
- Perceptron
- 5 Conclusions

6 References

Trauma.center	Heart	Death	Anticoagulant.	Glascow
	rate		therapy	score
Pitie-Salpêtrière	88	0	No	3
Beaujon	103	0	NA	5
Bicêtre	NA	0	Yes	6
Bicêtre	NA	0	No	NA
Lille	62	0	Yes	6
Lille	NA	0	No	NA
			•	
		:	:	:

Different sources of missing values (Not Available (NA)):

- Bugs/ Sensors failures
- Costs
- Sensitive data
- Data merging
- No time to measure in an emergency situation

Notation

Let an observation with missing values $(X_{obs(M)}, M, Y)$ be:

• Missing value pattern $M \in \{0, 1\}^d$ such that

$$M_j = 1 \iff X_j$$
 is missing.

•
$$obs(M) := \{j \in \{1, ..., d\} | M_j = 0\}$$
.

- $X_{\text{obs}(M)}$ observed covariates.
- $Y \in \{-1, 1\}$ the label (*always* observed).

Example:

$$X = (6, 3, \text{NA}, 3, \text{NA}),$$
$$M = (0, 0, 1, 0, 1),$$
$$obs(M) = (1, 2, 4),$$
$$X_{obs(M)} = (6, 3, 3).$$

Supervised learning with missing values: Classification

Complete data case

- Dataset: $\mathcal{D}_n = \{ (X_i, Y_i), i \in \{1, ..., n\} \}$
- Misclassification probability:

$$\mathscr{L}_{\operatorname{comp}}(\widehat{h}_{\operatorname{comp}}) := \mathbb{P}(\widehat{h}_{\operatorname{comp}}(X) \neq Y).$$

- Incomplete data case
 - Dataset: $\mathcal{D}_n = \{ (X_{i,obs(M_i)}, M_i, Y_i), i \in \{1, ..., n\} \}$
 - Misclassification probability:

$$\mathscr{L}(\widehat{h}) := \mathbb{P}(\widehat{h}(X_{\mathrm{obs}(M)}, M) \neq Y).$$

Assumptions on M|X, Y Rubin [1976]:

• MCAR (Missing completely at random).

 $M \perp X, Y$.

• MAR (Missing at random).

$$\forall m \in \{0,1\}^d,$$

$$\mathbb{P}(M = m | X, Y) = \mathbb{P}(M = m | X_{obs(m)}).$$

• **MNAR** (Missing not at random). *M* depends on the full vectors *X* and *Y*.

Index

Introduction

- Motivation
- Problem formulation

Related work

- Linear discriminant analysis (LD/
 - Setting
 - Approximation error introduced by missing data
 - LDA estimation with missing values
 - LDA estimation under sparsity assumptions
- Perceptron
- 5 Conclusions

6 References

Proposition

The Bayes predictor is given by

$$h^{\star}(X_{\operatorname{obs}(M)}, M) := \operatorname{sign}(\mathbb{E}[Y|X_{\operatorname{obs}(M)}, M]).$$

Following the same idea as Ayme et al. [2022], we can decompose it pattern-by-pattern as

$$h^{\star}(Z) = h^{\star}(X_{obs(M)}, M) = \sum_{m \in \{0,1\}^d} h^{\star}_m(X_{obs(m)}) \mathbb{1}_{M=m}$$

with

$$h_m^{\star}(X_{\operatorname{obs}(m)}) := \operatorname{sign}(\mathbb{E}[Y|X_{\operatorname{obs}(m)}, M = m]).$$

Problematic: prediction vs model inference

- Dempster et al. [1977]: EM algorithm to compute MLE from incomplete data.
- (!) Missing values in the training set and in the test set
- Estimating the underlying model does not help for prediction purposes.

$$\mathbb{E}[Y|X] = f_{\beta}(X) \qquad \not \gg \qquad \widehat{Y} \neq f_{\widehat{\beta}}(X_{\mathrm{obs}(M)})$$

- We need to design predictors handling missing entries.
- Decompose predictors specifically to the missing patterns.
- (!) The pattern-by-pattern Bayes classifier may not conserve the model structure on the observed covariates.

$$\mathbb{E}[Y|X] = f_{\beta}(X) \qquad \stackrel{?}{\Rightarrow} \qquad \mathbb{E}[Y|X_{\text{obs}}, M] = f_{\beta'}(X_{\text{obs}(M)}, M)$$

- (Linear model) Morvan et al. [2020]
- X (Logistic model) This work.

Index

Introduction

- Motivation
- Problem formulation

2 Related work

Linear discriminant analysis (LDA)

- Setting
- Approximation error introduced by missing data
- LDA estimation with missing values
- LDA estimation under sparsity assumptions

Perceptron

5 Conclusions

6 References

LDA in the complete data case

Assumption (LDA):
$$X | Y = k \sim \mathcal{N}(\mu_k, \Sigma)$$
.
Notation $\pi_k := \mathbb{P}(Y = k)$.

Proposition

The Bayes predictor reads as

$$h^{\star}(x) = \operatorname{sign}\left((\mu_{1} - \mu_{-1})^{\top} \Sigma^{-1} \left(x - \frac{\mu_{1} + \mu_{-1}}{2}\right) - \log\left(\frac{\pi_{-1}}{\pi_{1}}\right)\right).$$
(1)

Angel REYERO (Paris-Saclay University)

LDA in the complete data case vs LDA in the missing data case

Proposition [Internship contribution]

Under the **LDA** model with **MCAR** inputs, the pattern-by-pattern Bayes classifier is given by

$$h_{m}^{\star}(x_{obs(m)}) = \\ sign\left(\left(\mu_{1,obs(m)} - \mu_{-1,obs(m)} \right)^{\top} \Sigma_{obs(m)}^{-1} \left(x_{obs(m)} - \frac{\mu_{1,obs(m)} + \mu_{-1,obs(m)}}{2} \right) \right. \\ \left. - \log\left(\frac{\pi_{-1}}{\pi_{1}} \right) \right)$$

They are the projected parameters!

Approximation error introduced by missing data

The objective is to establish an upper bound for $L(h^{\star}) - L_{comp}(h_{comp}^{\star})$.

Assumptions made:

• Balanced classes $(\pi_1 = \pi_{-1} = 1/2)$.

•
$$\forall j \in \{1, \dots d\}, \eta_j := \mathbb{P}(M_j = 1) = \eta.$$

•
$$\forall j \in \{1, ..., d\}, (\mu_1 - \mu_{-1})_j = \pm \mu.$$

MCAR.

Observation

Exponential decay of the **approximation error** introduced by the missing values with *d*!

Denote $\lambda := \mu / \sqrt{\lambda_{max}(\Sigma)}$ the signal-to-noise ratio (SNR).

Proposition [Internship contribution]

Under the previous assumptions, we have that

$$L(h^{\star}) - L_{\mathrm{comp}}(h_{\mathrm{comp}}^{\star}) \lesssim \mu \sqrt{\frac{d}{\lambda_{\min}(\Sigma)}} \epsilon(\eta, \lambda)^{d},$$

with
$$\epsilon(\eta, \lambda) := \eta + e^{-\frac{\lambda^2}{8}}(1-\eta) < 1$$
.

Observation

Exponential decay of the bound with *d*.

Bound accuracy on the approximation error

Figure 1: The tightness of the provided upper bound. Continuous lines represent the true difference, while the dashed lines represent the established bound divided by a constant.

Given a dataset $\mathcal{D}_n^{\star} = (X_{\text{obs}(M_i),i}, M_i, Y_i)_{i=1,...n}$, the objective is to estimate the parameters of our p-b-p LDA. Suppose the Σ known and $\pi_1 = \pi_{-1} = 1/2$.

Definition

For each class $k \in \{-1, 1\}$ and $j \in [d]$,

$$\widehat{\mu}_{k,j} := \frac{\sum_{i=1}^{n} X_{i,j} \mathbb{1}_{Y_i = k} \mathbb{1}_{M_{i,j} = 0}}{\sum_{i=1}^{n} \mathbb{1}_{Y_i = k} \mathbb{1}_{M_{i,j} = 0}} = \frac{\sum_{i=1}^{n} (X_i \odot (1 - M_i))_j \mathbb{1}_{Y_i = k} \mathbb{1}_{M_{i,j} = 0}}{\sum_{i=1}^{n} \mathbb{1}_{Y_i = k} \mathbb{1}_{M_{i,j} = 0}}.$$
 (2)

Denote \hat{h} as the p-b-p classifier estimated by (2).

Denote $\rho := \max_{i \in [n]} \Sigma_{i,i} / \lambda_{\min}(\Sigma)$ the greatest value of the diagonal of the covariance over its smallest eigenvalue.

The objective is to establish an upper bound on the estimation error $(L(\hat{h}) - L(h^*))$.

Theorem [Internship contribution]

Under **LDA** model with **MCAR** inputs, we have that for a n large enough

$$L(\hat{h}) - L(h^{\star}) \lesssim \sqrt{\rho d/n}$$

- Observe that if $\Sigma = \sigma^2 I_d$ then $\rho = 1$ and $L(\hat{h}) L(h^*) \lesssim \sqrt{d/n}$.
- (!) Not an informative bound in high dimensions! $(d \gg n)$

Observation

Under **LDA** model with **MCAR** and $\Sigma = \sigma^2 I_d$ inputs:

- The estimation error $(L(\hat{h}) L(h^*))$ is of the order of $\sqrt{d/n}$.
- The approximation error due to the missing values $(L(h^*) L_{comp}(h^*_{comp}))$ is of the order of $\lambda \eta \sqrt{d} \epsilon(\eta, \lambda)^d$.

Then, for *d* verifying

$$-rac{\log(\sqrt{n}\lambda\eta)}{\log(\epsilon(\eta,\lambda))}\lesssim d,$$

the error introduced by the missing values is negligible compared with the estimation error.

Approximation error
$$\lesssim$$
 Estimation error

Estimates for sparsity assumptions

Assumption $\Sigma = \sigma^2 I_d$. Assumption (Sparsity) card $\{j \in [d], \mu_{1,j} - \mu_{-1,j} \neq 0\} = s \ll d$.

Definition

Given a dataset \mathcal{D}_n^{\star} , we estimate the mean as

$$\widetilde{\mu}_{k,j} := \widehat{\mu}_{k,j} \mathbb{1}_{\widehat{\mu}_{k,j} > \tau_{k,j}}, \quad \text{where}$$

$$\tau_{k,j} := 2\sigma \sqrt{\frac{\log(d)}{N_{k,j}}},\qquad(3)$$

 $\widehat{\mu}_{k,j}$ is defined in (2) and $N_{k,j} := \sum_{i=1}^{n} \mathbb{1}_{Y_i=k} \mathbb{1}_{M_{i,j}=0}$.

Notation: let \tilde{h} be the Bayes classifier estimated by (3).

Observation

More confidence for the coordinates that have been observed more frequently!

We can mitigate the curse of dimensionality with sparsity:

Theorem [Internship contribution]

Under the previous assumptions, for *n* large enough, we have that

$$L(\widetilde{h}) - L(h^{\star}) \lesssim \sqrt{s} \log(d) / n.$$

Index

Introduction

- Motivation
- Problem formulation
- 2 Related work
 - Linear discriminant analysis (LDA)
 - Setting
 - Approximation error introduced by missing data
 - LDA estimation with missing values
 - LDA estimation under sparsity assumptions
 - Perceptron
- 5 Conclusions

6 References

Consider two separated balls B_1 and B_2 resp. centered at C_1, C_2 and of respective radius R_1, R_2 in the normed vector space $(\mathbb{R}^d, \|\cdot\|_p)$ with p > 0. Assumptions made:

• $(C_1 - C_2)_j$ i.i.d.

- $(R_1|(C_1, C_2), R_2|(C_1, C_2))$ ~ $\mathscr{U}(0, \frac{1}{2} \| C_1 - C_2 \|_p)^{\otimes 2}.$
- $M \sim \mathcal{U}(\{m \in \{0,1\}^d, \|m\|_0 = s\}).$

Observation

To ensure the convergence of the *p-b-p perceptron*, we need the linear separability.

Asymptotic separability of two balls with the same radius:

Proposition [Internship contribution]

Under the previous assumptions and $R_2 = R_1$, then,

$$\lim_{J \to +\infty} \mathbb{P}\left(B_{1,\text{obs}(M)} \cap B_{2,\text{obs}(M)} = \emptyset\right) = \sqrt[p]{1 - \gamma},\tag{4}$$

with $\gamma := \lim_{d\to\infty} s/d$.

Observation

More separability with norms of higher order!

Angel REYERO (Paris-Saclay University)

Finite distance separability of two Euclidean balls with the different radius:

Proposition [Internship contribution]

Given two fixed centers c_1 and c_2 , R_1 , $R_2 \sim \mathcal{U}(0, \frac{1}{2} || c_1 - c_2 ||_p)^{\otimes 2}$, $(R_1 \perp L R_2)$, $(M \perp L R_1, R_2)$ and $\mathbb{P}(M_j = 1) = \eta$, then

$$\mathbb{P}\left(B_{1,obs(M)} \cap B_{2,obs(M)} = \phi\right) \ge 1 - \eta.$$

• (!) This result is worse than the previous result as we loose the square root, but it is a finite distance result.

Index

Introduction

- Motivation
- Problem formulation
- 2 Related work
 - Linear discriminant analysis (LDA)
 - Setting
 - Approximation error introduced by missing data
 - LDA estimation with missing values
 - LDA estimation under sparsity assumptions
 - Perceptron
- Conclusions
- References

Scarcity of methods for prediction with missing values

\Rightarrow p-b-p decomposition

- On the **LDA**(with MCAR):
 - It accepts p-b-p decomposition
 - With *d* large enough the missing values error is negligible
 - Estimated with a rate convergence of (with $\Sigma = \sigma^2 I_d$):
 - $\checkmark \sqrt{d/n}$
 - $\sqrt{s\log(d)/n}$ (with sparsity assumption)

• On the logistic regression:

- It does not accept p-b-p decomposition under very general assumptions
- On the perceptron:
 - P-b-p linear separability is ensured with a high probability if there is a small probability of being missing.

Index

Introduction

- Motivation
- Problem formulation
- 2 Related work
 - Linear discriminant analysis (LDA)
 - Setting
 - Approximation error introduced by missing data
 - LDA estimation with missing values
 - LDA estimation under sparsity assumptions
- Perceptron
- 5 Conclusions

Beferences

 Alexis Ayme, Claire Boyer, Aymeric Dieuleveut, and Erwan Scornet. Near-optimal rate of consistency for linear models with missing values. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pages 1211–1243. PMLR, 17–23 Jul 2022. URL

https://proceedings.mlr.press/v162/ayme22a.html.

 A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*, 39(1):1–38, 1977. ISSN 00359246. URL http://www.jstor.org/stable/2984875. Marine Le Morvan, Nicolas Prost, Julie Josse, Erwan Scornet, and Gael Varoquaux. Linear predictor on linearly-generated data with missing values: non consistency and solutions. In Silvia Chiappa and Roberto Calandra, editors, *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*, pages 3165–3174. PMLR, 26–28 Aug 2020. URL

https://proceedings.mlr.press/v108/morvan20a.html.

Donald B. Rubin. Inference and missing data. *Biometrika*, 63(3): 581–592, 1976. ISSN 00063444. URL

http://www.jstor.org/stable/2335739.

T. Tony Cai and Linjun Zhang. High Dimensional Linear Discriminant Analysis: Optimality, Adaptive Algorithm and Missing Data. *Journal* of the Royal Statistical Society Series B: Statistical Methodology, 81 (4):675–705, 06 2019. ISSN 1369-7412. doi: 10.1111/rssb.12326. URL https://doi.org/10.1111/rssb.12326.

Thank You, Questions?

λ -asymptotic LDA

Figure 2: Convergence of the error introduced by the missing values as the signal-to-noise ratio explodes.

P-b-p perceptron experiences

Figure 3: Excess risk w.r.t. the number of training samples. The curve represents the averaged excess risk over 100 repetitions within a 95% confidence interval.