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Motivation

Trauma.center Heart
rate Death Anticoagulant.

therapy
Glascow

score
Pitie-Salpêtrière 88 0 No 3

Beaujon 103 0 NA 5
Bicêtre NA 0 Yes 6
Bicêtre NA 0 No NA

Lille 62 0 Yes 6
Lille NA 0 No NA

...
...

...
...

Different sources of missing values (Not Available(NA)):
Bugs/ Sensors failures
Costs
Sensitive data
Data merging
No time to measure in an emergency situation
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Notation

Let an observation with missing values (Xobs(M),M ,Y ) be:

Missing value pattern M ∈ {0,1}d such that

Mj = 1 ⇐⇒ Xj is missing.

obs(M) := {j ∈ {1, ...d }|Mj = 0} .
Xobs(M) observed covariates.
Y ∈ {−1,1} the label (always observed).

Example:

X = (6,3,NA,3,NA),

M = (0,0, 1,0, 1),

obs(M)= (1,2, 4 ),

Xobs(M) = (6,3, 3 ).
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Supervised learning with missing values:
Classification

Complete data case
• Dataset: Dn = {(Xi ,Yi), i ∈ {1, ...n}}
• Misclassification probability:

Lcomp

(
ĥcomp

)
:=P

(
ĥcomp(X ) ̸=Y

)
.

Incomplete data case
• Dataset: Dn = {(Xi ,obs(Mi )

,Mi ,Yi), i ∈ {1, ...n}}
• Misclassification probability:

L
(
ĥ
)
:=P

(
ĥ(Xobs(M),M) ̸=Y

)
.
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Missing values mechanism

Assumptions on M |X ,Y Rubin [1976]:
MCAR (Missing completely at ran-
dom).

M ⊥⊥X ,Y .

MAR (Missing at random).

∀m ∈ {0,1}d ,

P(M =m|X ,Y )=P(
M =m|Xobs(m)

)
.

MNAR (Missing not at random). M
depends on the full vectors X and Y .

MNAR

MAR

MCAR
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Pattern-by-pattern Bayes predictor

Proposition
The Bayes predictor is given by

h⋆(Xobs(M),M) := sign(E
[
Y |Xobs(M),M

]
).

Following the same idea as Ayme et al. [2022], we can decompose it
pattern-by-pattern as

h⋆(Z )= h⋆(Xobs(M),M)= ∑
m∈{0,1}d

h⋆m(Xobs(m))1M=m

with

h⋆m(Xobs(m)) := sign(E
[
Y |Xobs(m),M =m

]
).
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Problematic: prediction vs model inference

Dempster et al. [1977]: EM algorithm to compute MLE from
incomplete data.
(!) Missing values in the training set and in the test set

✗ Estimating the underlying model does not help for prediction
purposes.

E[Y |X ]= fβ(X ) ��⇒ Ŷ ̸= fβ̂(Xobs(M))

We need to design predictors handling missing entries.
✓ Decompose predictors specifically to the missing patterns.

(!) The pattern-by-pattern Bayes classifier may not conserve the
model structure on the observed covariates.

E[Y |X ]= fβ(X )
?⇒ E[Y |Xobs,M]= fβ′(Xobs(M),M)

✓ (Linear model) Morvan et al. [2020]
✗ (Logistic model) This work.
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LDA in the complete data case

Assumption (LDA): X |Y = k ∼N (µk ,Σ).
Notation πk :=P(Y = k).

Proposition
The Bayes predictor reads as

h⋆(x)= sign

(
(µ1 −µ−1)

⊤
Σ−1

(
x − µ1 +µ−1

2

)
− log

(
π−1

π1

))
. (1)

4 3 2 1 0 1 2 3 4

4

2

0

2

4

Example with = Id and 1 = 1

Class 1
Class -1
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LDA in the complete data case vs LDA in the missing
data case

Proposition [Internship contribution]
Under the LDA model with MCAR inputs, the pattern-by-pattern Bayes
classifier is given by

h⋆m(xobs(m))=

sign

((
µ1,obs(m)−µ−1,obs(m)

)⊤
Σ−1

obs(m)

(
xobs(m)−

µ1,obs(m)+µ−1,obs(m)

2

)
− log

(
π−1

π1

))
They are the projected parameters!
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Approximation error introduced by missing data

The objective is to establish an upper bound for L(h⋆)−Lcomp(h⋆comp).

Assumptions made:
Balanced classes (π1 =π−1 = 1/2).
∀j ∈ {1, ...d },ηj :=P(Mj = 1)= η.
∀j ∈ {1, ...d },(µ1 −µ−1)j =±µ.
MCAR.

0.0 0.2 0.4 0.6 0.8 1.0
(Mj = 1)

0.0

0.1

0.2

0.3

0.4

0.5

L(
h

)
L c

om
p (h

co
m

p)

d= 2
d= 5
d= 10
d= 50
d= 100

Observation
Exponential decay of the approximation error introduced by the
missing values with d !

Angel REYERO (Paris-Saclay University) Classification with NA July 20, 2023 14 / 35



Bound on L(h⋆)−Lcomp(h⋆comp)

Denote λ :=µ/
√
λmax(Σ) the signal-to-noise ratio (SNR).

Proposition [Internship contribution]
Under the previous assumptions, we have that

L(h⋆)−Lcomp(h⋆comp)≲µ

√
d

λmin(Σ)
ϵ(η,λ)d ,

with ϵ(η,λ) := η+e− λ2
8 (1−η)< 1.

Observation
Exponential decay of the bound with d .
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Bound accuracy on the approximation error

L(h⋆)−Lcomp(h⋆comp)≲µ

√
d

λmin(Σ)
ϵ(η,λ)d .
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Figure 1: The tightness of the provided upper bound. Continuous lines
represent the true difference, while the dashed lines represent the
established bound divided by a constant.
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LDA estimation

Given a dataset D⋆
n = (Xobs(Mi ),i ,Mi ,Yi)i=1,...n, the objective is to

estimate the parameters of our p-b-p LDA. Suppose the Σ known and
π1 =π−1 = 1/2.

Definition
For each class k ∈ {−1,1} and j ∈ [d ],

µ̂k ,j :=
∑n

i=1 Xi ,j1Yi=k1Mi ,j=0∑n
i=11Yi=k1Mi ,j=0

=
∑n

i=1(Xi ⊙ (1−Mi))j1Yi=k1Mi ,j=0∑n
i=11Yi=k1Mi ,j=0

. (2)

Denote ĥ as the p-b-p classifier estimated by (2).
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LDA estimation convergence rate

Denote ρ :=maxi∈[n]Σi ,i/λmin(Σ) the greatest value of the diagonal of
the covariance over its smallest eigenvalue.
The objective is to establish an upper bound on the estimation error
(L(ĥ)−L(h⋆)).

Theorem [Internship contribution]
Under LDA model with MCAR inputs, we have that for a n large
enough

L(ĥ)−L(h⋆)≲
√
ρd/n

Observe that if Σ=σ2Id then ρ = 1 and L(ĥ)−L(h⋆)≲
√

d/n.

(!) Not an informative bound in high dimensions! (d ≫ n)
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LDA estimation error

Observation
Under LDA model with MCAR and Σ=σ2Id inputs:

The estimation error (L(ĥ)−L(h⋆)) is of the order of
√

d/n.
The approximation error due to the missing values
(L(h⋆)−Lcomp(h⋆comp)) is of the order of λη

p
dϵ(η,λ)d .

Then, for d verifying

− log(
p

nλη)
log(ϵ(η,λ))

≲ d ,

the error introduced by the missing values is negligible compared with
the estimation error.

Approximation error ≲ Estimation error
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Estimates for sparsity assumptions

Assumption Σ=σ2Id .
Assumption (Sparsity) card

(
{j ∈ [d ],µ1,j −µ−1,j ̸= 0}

)= s ≪ d .

Definition
Given a dataset D⋆

n , we estimate the mean as

µ̃k ,j := µ̂k ,j1µ̂k ,j>τk ,j , where τk ,j := 2σ

√
log(d)
Nk ,j

, (3)

µ̂k ,j is defined in (2) and Nk ,j :=
∑n

i=11Yi=k1Mi ,j=0.

Notation: let h̃ be the Bayes classifier estimated by (3).

Observation
More confidence for the coordinates that have been observed more
frequently!
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LDA estimation under sparsity Assumptions

We can mitigate the curse of dimensionality with sparsity:

Theorem [Internship contribution]
Under the previous assumptions, for n large enough, we have that

L(h̃)−L(h⋆)≲
√

s log(d)/n.
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Data modeling

Consider two separated balls B1 and B2 resp. centered at C1,C2 and
of respective radius R1,R2 in the normed vector space (Rd ,∥·∥p) with
p > 0.
Assumptions made:

(C1 −C2)j i.i.d.
(R1|(C1,C2),R2|(C1,C2))
∼U (0, 1

2
∥∥C1 −C2

∥∥
p)

⊗2.

M ∼U (
{
m ∈ {0,1}d ,∥m∥0 = s

}
).

C1

C2

∥∥C1 −C2
∥∥

2
R2

R1
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Linear separability

Observation
To ensure the convergence of the p-b-p perceptron, we need the linear
separability.

Asymptotic separability of two balls with the same radius:

Proposition [Internship contribution]
Under the previous assumptions and R2 =R1,then,

lim
d→+∞

P
(
B1,obs(M)∩B2,obs(M) =;)= p

√
1−γ, (4)

with γ := limd→∞s/d .

Observation
More separability with norms of higher order!
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Linear separability

Finite distance separability of two Euclidean balls with the different
radius:

Proposition [Internship contribution]

Given two fixed centers c1 and c2, R1,R2 ∼U (0, 1
2 ∥c1 −c2∥p)

⊗2,
(R1 ⊥⊥R2), (M ⊥⊥R1,R2) and P(Mj = 1)= η, then

P
(
B1,obs(M)∩B2,obs(M) =;)≥ 1−η.

(!) This result is worse than the previous result as we loose the
square root, but it is a finite distance result.
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Take-home message

Scarcity of methods for prediction with missing values
⇒ p-b-p decomposition
On the LDA(with MCAR):

• It accepts p-b-p decomposition
• With d large enough the missing values error is negligible
• Estimated with a rate convergence of (with Σ=σ2Id ):

Ï √
d/n

Ï √
s log(d)/n (with sparsity assumption)

On the logistic regression:
• It does not accept p-b-p decomposition under very general

assumptions
On the perceptron:

• P-b-p linear separability is ensured with a high probability if there is
a small probability of being missing.
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Thank You, Questions?
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λ-asymptotic LDA
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Figure 2: Convergence of the error introduced by the missing values as the
signal-to-noise ratio explodes.
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P-b-p perceptron experiences
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(a) MCAR d = 5 (b) MCAR d = 10

Figure 3: Excess risk w.r.t. the number of training samples. The curve
represents the averaged excess risk over 100 repetitions within a 95%
confidence interval.
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