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Motivation: high-dimensional feature selection

Which genes are significant in relation to the disease?
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Motivation: high-dimensional feature selection

Which genes are significant in relation to the disease?

¥ We need to find _
M = {j: X Ly}
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Conditional variable selection

l%%::{j:X/;kL/y }.
A Highly correlated genomic data

= marginally, many genes are important.
Are they only important because of correlation?

Genomic data correlation Selecting genes associated with kidney stones
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Problem: high local correlation Q: which genes are relevant glven all others?
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Conditional variable selection
B8 4 = {j: Xy | X1}

A Highly correlated genomic data
= marginally, many genes are important.
Are they only important because of correlation?

Selecting genes associated with kidney stones
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Genomic data correlation
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We need to select relevant variables conditionally on all the others!
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Knockoffs framework

Knockoffs (from Candeés et al. (2018)):
@ Knockoff variables (X): imitations of X independent of y:
* X, Xlowap(s) = [X, X] for any s  [p].

[X1.X2.X3.X].X2.Xg} . {XW.XZ.XB.Xng.XS}

swap(1,3) -
e X1l y|X.

Example 1 (Gaussian knockoffs)
If X ~ .4(0,%), then [X, X] ~ .4 (0, G) with

_ Y Y —diag(1) p )
G= [Z—diag(l) - for A € RP such that G > 0:

® [X,X]is exchangeable.

e X | X is known!

N
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Knockoffs framework

Knockoffs (from Candés et al. (2018)):
© Knockoff variables (X): imitations of X independent of y:
© Knockoffs statistics (W c RP): comparison of predictability
between the original covariate and its knockoff.
Example 1 (Lasso Coefficients Difference)

Regress y € R on [X, X] € R?P using LASSO and compute the
estimated coefficient difference: W, = ]ﬁ,| |/), pl-
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Knockoffs framework

Knockoffs (from Candeés et al. (2018)):
@ Knockoff variables (X): imitations of X independent of y:

© Knockoffs statistics (W ¢ RP): comparison of predictability
between the original covariate and its knockoff.

© Threshold: it is data-dependent and given by

1+#{: W, < -t}
FU W= v Sq}

T;:min{tEW:

and +e if empty.
This procedure provides FDR control!(FDR({j: W; > Tj}) < q)

R ‘ém//o} R R
FDP(S):=-——  FDR(S):=E {FDP(S)} .

‘é)w
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Knockoffs framework
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Impact of exchangeability violation

A In practice, the distribution is unknown and generate X is complex.
A FDR control relies on null covariates being symmetric around O:

Lemma 1 (from Candés et al. (2018))
Conditionally on (|Ws|,...,|Wp|), the signs of the null W;s, j € 7 , are
11D coin flips.

Data derived

Data derived
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A necessary condition for exchangeability

o Exchangeability: [X, X]up(s) = [X, X] for any s C [p].
@ In particular for s = [p]!

Diagnosing Knockoffs exchangeability with a Classifier Two-Sample Test

Accuracy > 0.5

<X> ML X

z2=0
—
Input data PY
) N e
X 2 l /
Binary classifier
Accuracy = 0.5
Knockoffs

@ C2ST-validity: classifier accuracy close to 0.5 (chance level)
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6 Experiments
@ Settings
@ Simulated data
® Semi-simulated
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Simulated data:
@ X € R™P smooth flattened 3D

Semi-simulated data:

@ Functional Magnetic

structure _ Resonance Imaging (MRI)
@ w smoothing kernel width o
° ﬁ* e {0 1}p 0 Spllt In (X1 ,y1) and (Xz,yg)
o 55— |B*]lo/p © Perform a lasso on (Xj,y;) to
P 0 obtain By
® y=XB*+o¢

e y51m X213 + o€
o = | XB*||/(SNR|e]]) 1
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Knockoffs generation methods:
@ VAE from Zhu et al. (2021)(DeepLINK)
® Gaussian from Candés et al. (2018)(Graphical Lasso)
® Deep from Romano et al. (2020)(Deep Knockoffs)
® Parallel and Auto-regressive from Blain et al. (2025)(ours)
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C2ST accuracy

C25T accuracy
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Figure 1: C2ST diagnostic metric for varying n and p.
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Varying smoothing

Knockoffs performance with varying smoothing
(n=500,p =500)
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Figure 2: FDP and C2ST diagnostic metric for varying smoothing.
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Semi-simulated datasets

False Discovery Proportion
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Figure 3: Empirical FDP on semi-simulated data for 42 contrast pairs
using Gaussian vs nonparametric knockoffs. We use 7 HCP contrasts
CO0: "Motor Hand", C1: "Motor Foot", C2: "Gambling", C3: "Relational", C4:

"Emotion", C5: "Social", C6: "Working Memory".
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Take-home message

B ot = {j: Xy | X1},
@ Knockoffs provide an efficient and statistically-valid method.
A In practice, construct X is difficult:
1. high-dimensionality, 2. correlation.
= Exchangeability violations lead to inflated FDR.

v Diagnosing non-exchangeability through 2 necessary conditions:
e C2ST between the original and knockoff distributions.
® Valid pairing between the original and knockoff individual.

v Fixing exchangeability by proposing new knockoff samplers:

® Autoregressive based on Candés et al. (2018).
¢ Parallel computationally-efficient approximate.
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Thank You, Questions?
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Sequential Conditional Independent Pairs

Algorithm: Sequential Conditional Independent Pairs (SCIP;
Candes et al., 2018)

=1

while j < p do
Sample X, from . (Xj | X}, X :/4)
j=Jj+1

: end while

AN S\ s
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Sequential generation of nonparametric knockoffs

Algorithm: Sequential generation of nonparametric knockoffs by
learning to predict X; from (X,,-,)h /1) using a model f;
Require: f .7
1: for j€[1,p] do
2. Fita prediction model f; on ((X_;,X; 1),X;) > Typically a Lasso
3. Compute the residual & = X; — fi((X_j, X1, 1))
4:  Sample X; = f((X_j, X1/ 1))+ 0o(&))
5: end for
6: Return X,
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Parallel generation of nonparametric knockoffs

Algorithm: Parallel generation of nonparametric knockoffs by
learning to predict X; from X_; using a model f;
Require: fe¢ .
forjc[1,p] do
Fit a prediction model f; on (X,,,X ) > Typically a Lasso
Compute the residual & = X; — f;(X_)
end for
forjc[1,p] do
Sample X; = fi(X_j) + o (€;) > o is a permutation of [n]
end for
Return X,

@ N gk w2
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Improper pairing

Knockoffs performance with different pairings

(n =500, p =500)

Well-paired Knockoffs 50% of Random pairing
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False Discovery Proportion
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M ® Generated samples
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.. T T ---- Knockoffs pairing
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Figure 4: Exchangeability violation by improper sample pairing.
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