

A primer on linear classification with missing data

Angel Reyero Lobo^{1,2} Alexis Ayme³ Claire Boyer⁴ Erwan Scornet⁵

 1 Université de Toulouse 2 Inria Paris-Saclay 3 École Normale Supérieure 4 Université Paris-Saclay ⁵ Sorbonne Université

Abstract

Supervised learning with missing data aims to build the best possible prediction of a target output based on partially observed inputs. The main approaches to address this problem can be divided into: (i) impute-then-predict strategies, which first fill in the missing input components and then apply a single predictor; and (ii) pattern-by-pattern approaches, where a separate predictor is trained for each missing data pattern.

It is essential to study, from a theoretical perspective, how standard linear classifiers—namely the perceptron, logistic regression, and linear discriminant analysis (LDA)—can be adapted to effectively handle missing values.

Missing values framework

Notation: Let an observation with missing values $(X_{obs(M)}, M, Y)$ be:

- Missing value pattern $M \in \{0,1\}^d$ such that
 - $M_i = 1 \iff X_i \text{ is missing.}$
- $obs(M) := \{j \in \{1, ...d\} | M_j = 0\}$.
- $X_{\text{obs}(M)}$ observed covariates.
- $Y \in \{-1, 1\}$ the label (always observed).

Example:

$$X = (6, 3, NA, 3, NA),$$
 $M = (0, 0, 1, 0, 1),$
 $obs(M) = (1, 2, 4),$
 $X_{obs(M)} = (6, 3, 3).$

Missing values mechanism: Assumptions on $M \mid X, Y$ categorized into

- MCAR (Missing completely at random). $M \perp \!\!\! \perp X, Y$.
- MAR (Missing at random). $\forall m \in \{0,1\}^d$, $\mathbb{P}(M = m \mid X, Y) = \mathbb{P}(M = m \mid X_{obs(m)}).$
- MNAR (Missing not at random). M depends on X and Y.

Classification with missing values

- Complete data case
 - Dataset: $\mathcal{D}_n = \{(X_i, Y_i), i \in \{1, ...n\}\}$ • Misclassification probability:

$$\mathcal{L}_{ ext{comp}}\left(\widehat{h}_{ ext{comp}}
ight) := \mathbb{P}\left(\widehat{h}_{ ext{comp}}(X)
eq Y
ight).$$

Bayes classifier:

$$h_{\text{comp}}^{\star}(X) = \text{sign}(\mathbb{E}[Y \mid X]).$$

- Incomplete data case
 - Dataset: $\mathcal{D}_n^{\star} = \{(X_{i, \text{obs}(M_i)}, M_i, Y_i), i \in \{1, ...n\}\}$
 - Misclassification probability:
 - $\mathcal{L}\left(\widehat{h}\right) := \mathbb{P}\left(\widehat{h}(X_{\mathrm{obs}(M)}, M) \neq Y\right).$
 - Bayes classifier:

$$h^\star(X_{\mathrm{obs}(M)},M) := \mathrm{sign}(\mathbb{E}\left[Y \mid X_{\mathrm{obs}(M)},M\right]) = \sum_{m \in \{0,1\}^d} h^\star_m(X_{\mathrm{obs}(m)}) \mathbb{1}_{M=m},$$

with $h_m^{\star}(X_{\text{obs}(m)}) := \text{sign}(\mathbb{E}\left[Y \mid X_{\text{obs}(m)}, M = m\right])$. It can be decomposed pattern-by-pattern!

Prediction VS Model Inference

Model estimation can be done via MLE using EM algorithm.

- Missing values in the training set <u>and</u> in the test set
- Estimating the underlying model does not help for prediction:

$$\mathbb{E}[Y|X] = f_{\beta}(X) \qquad \Rightarrow \qquad \widehat{Y} \neq f_{\widehat{\beta}}(X_{\text{obs}(M)}).$$

We need to design predictors handling missing entries:

- Impute-then-predict (Morvan et al. [2021]).
- Pattern-by-pattern decomposition (Ayme et al. [2022]).

Lemma: Bayes optimality for linear classifiers

If a p-b-p approach with linear classifiers is not Bayes optimal, then constant imputation with linear classifiers is not Bayes optimal.

Main question

Does the pattern-by-pattern Bayes classifier conserve the model structure on the observed covariates as happens with the linear model (Morvan et al. [2020])?

$$\mathbb{E}[Y|X] = f_{\beta}(X) \qquad \stackrel{?}{\Rightarrow} \qquad \mathbb{E}[Y|X_{\text{obs}}, M] = f_{\beta'}(X_{\text{obs}(M)}, M).$$

Perceptron

To ensure the convergence of the perceptron, we need the linear separability.

Lemma: p-b-p perceptron

Linear separability of complete data does not imply that of incomplete data.

X The p-b-p and constant imputation are not Bayes optimal.

Logistic regression

We make the following assumption about the distribution of complete data.

Assumption: Logistic model

Let $\sigma(t) = 1/(1 + e^{-t})$. There exist $\beta_0^{\star}, \dots, \beta_d^{\star} \in \mathbb{R}$ such that the distribution of the output $Y \in \{-1,1\}$ given the complete input X satisfies $\mathbb{P}(Y=1 \mid X) = \sigma(\beta_0^* + \sum_{j=1}^d \beta_j^* X_j)$.

Proposition: p-b-p logistic regression

Assume $M \perp \!\!\! \perp X, Y$ (MCAR) and logistic model for complete data. Let $m \in \{0,1\}^d$ and assume that the logistic model holds on the missing pattern M=m, that is there exist a vector $\beta_m^\star \in \mathbb{R}^{|\mathrm{obs}(m)|+1}$ such that

$$\mathbb{P}\left(Y=1\mid X_{\text{obs}(m)}, M=m\right) = \sigma\left(\beta_{0,m}^{\star} + \sum_{j\in \text{obs}(m)} \beta_{j,m}^{\star} X_j\right).$$

Then, for all $j \in mis(m)$, $\beta_i^* = 0$.

X The p-b-p and constant imputation are not Bayes optimal.

Linear discriminant analysis (LDA)

We make the following assumption about the distribution of complete data.

Assumption: Balanced LDA

Denoting $\pi_1 := \mathbb{P}(Y=1)$ and $\pi_{-1} := \mathbb{P}(Y=-1)$, then we assume that:

- $X \mid Y = k \sim \mathcal{N}(\mu_k, \Sigma),$
- $\pi_1 = \pi_{-1}$.

This assumption yields a closed-form Bayes classifier:

Proposition: Bayes classifier with complete data

Under the **LDA** model, the Bayes classifier is

$$h^*(x) = \operatorname{sign}\left((\mu_1 - \mu_{-1})^\top \Sigma^{-1} \left(x - \frac{\mu_1 + \mu_{-1}}{2}\right)\right).$$

Proposition: p-b-p LDA

Under the LDA model with MCAR inputs, the p-b-p Bayes classifier is

$$h_m^{\star}(x_{\text{obs}(m)}) = \text{sign}\left(\left(\mu_{1,\text{obs}(m)} - \mu_{-1,\text{obs}(m)}\right)^{\top} \Sigma_{\text{obs}(m)}^{-1} \left(x_{\text{obs}(m)} - \frac{\mu_{1,\text{obs}(m)} + \mu_{-1,\text{obs}(m)}}{2}\right)\right)$$

- P-b-p is Bayes optimal!
- ✓ They are the projected parameters!

Proposition: constant imputation LDA

Under the LDA model with MCAR inputs, constant imputation is optimal only if Σ diagonal.

Experiments

Figure: Excess risks of several classifiers on generated data (LDA or Logistic framework) with $\Sigma = I_d$ and MCAR or MNAR missing mechanisms. Dotted lines stand for the missing Bayes risk.

Take-home message

Scarcity of methods for prediction with missing values ⇒ p-b-p decomposition

- On the perceptron:
 - P-b-p linear separability not preserved in general ⇒ imputation and p-b-p do not work.
- On the logistic regression:
 - Logistic model assumption not preserved ⇒ imputation and p-b-p do not work.
- On the LDA(with MCAR):
 - It accepts p-b-p decomposition!
 - Imputation only valid with Σ diagonal.
 - ✓ Other finite-sample analyses for parameter estimation and MNAR data are readily available.

References

Alexis Ayme, Claire Boyer, Aymeric Dieuleveut, and Erwan Scornet. Near-optimal rate of consistency for linear models with missing values. In ICML, 2022. URL https://proceedings.mlr.press/v162/ayme22a.html. Marine Le Morvan, Nicolas Prost, Julie Josse, Erwan Scornet, and Gael Varoquaux. Linear predictor on

linearly-generated data with missing values: non consistency and solutions. In AISTATS, 2020. URL https://proceedings.mlr.press/v108/morvan20a.html. Marine Le Morvan, Julie Josse, Erwan Scornet, and Gael Varoquaux. What's a good imputation to predict

with missing values? In NeurIPS, 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/ 5fe8fdc79ce292c39c5f209d734b7206-Paper.pdf.