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Abstract

Supervised learningwithmissing data aims to build the best possible prediction of a target
output based on partially observed inputs. The main approaches to address this problem
can be divided into: (i) impute-then-predict strategies, which first fill in the missing input
components and then apply a single predictor; and (ii) pattern-by-pattern approaches,
where a separate predictor is trained for each missing data pattern.

It is essential to study, from a theoretical perspective, how standard linear clas-
sifiers—namely the perceptron, logistic regression, and linear discriminant analysis
(LDA)—can be adapted to effectively handle missing values.

Missing values framework

Notation: Let an observation with missing values (Xobs(M ),M, Y ) be:

Missing value pattern M ∈ {0, 1}d such that

Mj = 1 ⇐⇒ Xj is missing.

obs(M ) := {j ∈ {1, ...d}|Mj = 0} .
Xobs(M ) observed covariates.
Y ∈ {−1, 1} the label (always observed).

Example:

X = (6, 3, NA, 3, NA),
M = (0, 0, 1, 0, 1),

obs(M ) = (1, 2, 4 ),
Xobs(M ) = (6, 3, 3 ).

Missing values mechanism: Assumptions on M | X, Y categorized into

MCAR (Missing completely at random). M ⊥⊥ X, Y.

MAR (Missing at random). ∀m ∈ {0, 1}d,
P (M = m | X, Y ) = P


M = m | Xobs(m)


.

MNAR (Missing not at random). M depends on X
and Y .

MNAR

MAR

MCAR

Classification with missing values

Complete data case
Dataset: Dn = {(Xi, Yi), i ∈ {1, ...n}}
Misclassification probability:

Lcomp

ĥcomp


:= P


ĥcomp(X) ”= Y


.

Bayes classifier:
hı
comp(X) = sign(E [Y | X ]).

Incomplete data case
Dataset: Dı

n = {(Xi,obs(Mi),Mi, Yi), i ∈ {1, ...n}}
Misclassification probability:

L

ĥ

:= P


ĥ(Xobs(M ),M) ”= Y


.

Bayes classifier:
hı(Xobs(M ),M) := sign(E

[
Y | Xobs(M ),M

]
) =

∑

m∈{0,1}d
hı
m(Xobs(m))1M=m,

with hı
m(Xobs(m)) := sign(E

[
Y | Xobs(m),M = m

]
). It can be decomposed pattern-by-pattern!

Prediction VS Model Inference

Model estimation can be done via MLE using EM algorithm.

E Missing values in the training set and in the test set
7 Estimating the underlying model does not help for prediction:

E[Y |X ] = fβ(X) ⇒ Ŷ ”= fβ̂(Xobs(M )).

We need to design predictors handling missing entries:

Impute-then-predict (Morvan et al. []).
Pattern-by-pattern decomposition (Ayme et al. []).

Lemma: Bayes optimality for linear classifiers

If a p-b-p approach with linear classifiers is not Bayes optimal, then constant imputation
with linear classifiers is not Bayes optimal.

Main question

Does the pattern-by-pattern Bayes classifier conserve the model structure on the ob-
served covariates as happens with the linear model (Morvan et al. [])?

E[Y |X ] = fβ(X) ?⇒ E[Y |Xobs,M ] = fβ′(Xobs(M ),M ).

Perceptron

To ensure the convergence of the perceptron, we need the linear separability.

Lemma: p-b-p perceptron

Linear separability of complete data does not imply that of incomplete data.

7 The p-b-p and constant imputation are not Bayes optimal.

Logistic regression

We make the following assumption about the distribution of complete data.

Assumption: Logistic model

Let σ(t) = 1/(1 + e−t). There exist βı
0 , . . . , β

ı
d ∈ R such that the distribution of the output

Y ∈ {−1, 1} given the complete input X satisfies P(Y = 1 | X) = σ(βı
0 +

d
j=1 β

ı
jXj).

Proposition: p-b-p logistic regression

Assume M ⊥⊥ X, Y (MCAR) and logistic model for complete data. Let m ∈ {0, 1}d and
assume that the logistic model holds on the missing pattern M = m, that is there exist a
vector βı

m ∈ R|obs(m)|+1 such that

P

Y = 1 | Xobs(m),M = m


= σ


βı
0,m +

∑

j∈obs(m)
βı
j,mXj


.

Then, for all j ∈ mis(m), βı
j = 0.

7 The p-b-p and constant imputation are not Bayes optimal.

Linear discriminant analysis (LDA)

We make the following assumption about the distribution of complete data.

Assumption: Balanced LDA

Denoting π1 := P(Y = 1) and π−1 := P(Y = −1), then
we assume that:

X | Y = k ∼ N (µk,Σ),
π1 = π−1.

This assumption yields a closed-form Bayes classifier:

Proposition: Bayes classifier with complete data

Under the LDA model, the Bayes classifier is

hı(x) = sign
(
(µ1 − µ−1)¤Σ−1

(
x− µ1 + µ−1

2

))
.

Proposition: p-b-p LDA

Under the LDA model with MCAR inputs, the p-b-p Bayes classifier is

hı
m(xobs(m)) = sign

(
µ1,obs(m) − µ−1,obs(m)

¤Σ−1
obs(m)

(
xobs(m) −

µ1,obs(m) + µ−1,obs(m)

2

))

3 P-b-p is Bayes optimal!

3 They are the projected parameters!

Proposition: constant imputation LDA

Under the LDA model with MCAR inputs, constant imputation is optimal only if Σ diag-
onal.

Experiments
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Figure: Excess risks of several classifiers on generated data (LDA or Logistic framework) with Σ = Id andMCAR
or MNAR missing mechanisms. Dotted lines stand for the missing Bayes risk.

Take-home message

Scarcity of methods for prediction with missing values ⇒ p-b-p decomposition

On the perceptron:

P-b-p linear separability not preserved in general ⇒ imputation and p-b-p do not work.

On the logistic regression:

Logistic model assumption not preserved ⇒ imputation and p-b-p do not work.

On the LDA(with MCAR):

It accepts p-b-p decomposition!
Imputation only valid with Σ diagonal.

3 Other finite-sample analyses for parameter estimation and MNAR data are
readily available.
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