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Abstract

Variable importance aims to assess the relevance of each input feature in predicting the
output. Traditionally, variable importance has been a heuristic and non-rigorous methodology,
often applied at the end of the machine learning pipeline to provide an idea of feature relevance.
Furthermore, it has typically been model-dependent, making comparisons of feature importance
across different algorithms impossible. Additionally, common variable importance measures
struggle in the presence of correlated and high-dimensional settings.

This work aims to establish a more rigorous framework that offers a model-agnostic measure
to address these gaps in the literature. First, we present a detailed comparison of the commonly
used measures and algorithms. Then, we explore the connection between two key approaches:
a permutation-based method and a removal-based method. The permutation-based approach,
which includes a conditional sampling step, is computationally more feasible than the removal-
based method, and we outline the assumptions under which this conditional step is valid. This
provides a more stable method without the inference issues of the removal-based approach.

Finally, we turn to controlled variables selection. In the field of variable importance using
global sensitivity analysis, it is common to heuristically suppress some covariates to obtain a
minimal set of important variables, often without statistical guarantees. Furthermore, traditional
conditional permutation importance only provides type-I error control, which is insufficient for
high-dimensional settings. To address this, we propose a new modified version of conditional
permutation importance within the knockoff framework that is capable of controlling the False
Discovery Rate.

Keywords: variable importance, global sensitivity analysis, statistical inference, controlled variable
selection, knockoffs, false discovery rate(FDR).

Notations. We use V for the maximum (aVb := max(a,b))and A for the minimum (aAb := min(a, b)).

X7 denotes the j-th component of the random variable X with p covariates. X7 denotes the
remaining components. Similarly for s C {1,...,p} a subset of covariates, X* stands for the s
coordinates of X and X ~° for the rest.

We denote v_;(X 7) = E [X7|X 7] for the regression of the j-th covariate given X 7 and by
m(X) =E[y|X] and m_;(X7) =E [y|X 7] for the regression of y given X and X 7 respectively.
We use a hat for their empirical couterpart.

For a given input X and output 3, X) denotes the random variable where the —j-th covariates
are preserved and the j-th covariate is independent from the rest of coordinates but marginally
preserves the same distribution. Therefore, X7/ = X@W=7 X7 1| X7 and X0 X XJ. On
the other hand, X is the random variable with conditionally independent j-th covariate to the
rest of covariates. This means that all the coordinates are preserved but the j-th covariate, that
not only preserves its marginal distribution but also its relationship with the rest of covariates.
Nevertheless, conditionally on the rest of coordinates X7, X7 and X7 are independent and
identically distributed (X7 i xi |X~79). In this way, the link with the output y is broken. Therefore,
we observe that in both cases, the coordinates —j are equal, i.e. X7 = XU)—J = )Z(j)_j, but is the
j-th coordinate that changes.

We use < to indicate equality in distribution. For s C {1,...,p}, (X, )?)swap(s) denotes the vector
obtained by swapping the coordinates X7 by X7 for j € s.
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1 Introduction

Due to the growing popularity of machine learning methods, it is increasingly important to decipher
these black-box models to ensure they behave as expected. This means confirming that the algorithms
prioritize relevant variables for prediction. For example, in a medical study of heart disease, it is
crucial to verify that the model considers features such as blood pressure or cholesterol levels more
significantly than irrelevant factors like eye color. This would indicate that the model is learning the
underlying distribution of the data. Similarly, in a candidate application filter, it is important that
discriminatory features such as race or gender are not considered to ensure fairness. Thus, there is a
clear need for model transparency.

On the other hand, advancements in computational power and algorithm development make
it desirable to use these models to understand the underlying data distribution. Modern machine
learning models are capable of accurate predictions, and leveraging these models can help interpret
data and provide valuable insights for further research. For instance, if a model can accurately
predict a disease based on a set of genes, identifying the important predictive variables can guide
specialists on which genes to study further to address the disease.

The distinction between data transparency and model transparency often comes down to the
difference between intrinsic variable importance and variable importance, or equivalently, feature
importance and variable importance. This distinction is discussed further in Section 1.2.

1.1 Motivation

The importance of a variable is not a formal concept. Indeed, there are many properties that may be
considered desirable, and not all of them are compatible. In this section, we will discuss some of the
properties that we consider essential for defining a realistic and usable variable importance measure.

Model-agnostic approach: As variable importance has traditionally been a non-rigorous empirical
approach, many methods have attempted to determine the importance of each covariate using specific
models. For instance, in linear regression, the estimated coefficients for each covariate can be
considered as measures of variable importance. Similarly, in tree-based approaches, impurity-based
methods aim to assign each covariate an importance score based on the impurity decrease.

Additionally, there is often a trade-off between model complexity and model transparency, as
simpler models tend to be more interpretable, as is the case with linear regression. However, these
model-specific approaches do not align with the goal of measuring the predictive capacity of each
covariate. In fact, the measures provided by model-specific approaches are not comparable across
different models. As seen in Figure 1, a model that is transparent but too simple to capture the
underlying data does not offer meaningful insights into the data-generating process. Therefore, we
should consider a model-agnostic approach.

Computational feasibility: Some sensitivity analysis measures such as the Total Sobol Index
can be considered desirable for quantifying the importance of each covariate. However, they often
face inference issues that make their practical use challenging. For instance, these measures may
exhibit bias and stability problems because they require refitting the global model while dropping
each covariate, and the optimization error does not accumulate as expected. This is the primary
limitation of the LOCO approach as it will be seen later.

Other methods, such as Shapley values, require refitting the model a combinatorial number of
times, making them computationally infeasible to calculate directly. As a result, we aim to strike a
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Figure 1: Given 7., = 30 of the underlying distribution y = sin(X)exp(—X?) we fit multiple
models. Interpreting the underlying distribution with simple and transparent models may be
misleading; therefore, we need a model-agnostic measure to avoid model misspecification only for
the transparency.

balance between the amount of information extracted and the practical feasibility of the algorithm
to ensure its usability in real-life applications, particularly in high-dimensional settings.

Statistical control: Sensitivity analysis tools are typically used for factor screening, meaning they

select a minimal group of covariates that best explain the variance (see Breiman (2001); Bénard et al.
(2022h)). However, this process is often done in a heuristic manner and without formal statistical
control. Furthermore, when statistical control is provided (see Chamma et al. (2023), Williamson et al.

(2021D)), it usually focuses on type-I error control, which becomes ineffective in high-dimensional
settings (see Giraud (2021)).

Correlated settings: Not only do inference issues arise when covariates are highly correlated (see
Verdinelli and Wasserman (2023)), but interpretation challenges also emerge in such cases (see Molnar
et al. (2021)). For instance, a covariate might be mistakenly discovered as important simply because
it is correlated with a truly relevant covariate. To address these issues, a conditional approach is
required. In future research, grouping covariates may also provide a solution to these challenges.

1.2 Variable importance VS Feature importance

The distinction between variable importance and feature importance can be subtle. When discussing
variable importance, we assume that we are trying to clarify the behavior of a black-box algorithm
that operates on the data, but we lack insight into the covariates considered in predicting the outcome.
Therefore, by assessing the importance of a covariate for the algorithm’s outcome, we can achieve a
more interpretable AI by shedding light on its black-box behavior. This approach is model-agnostic
in that it should function with any model without specifying a particular trained model.



On the other hand, feature importance aims to assess a more intrinsic characteristic of the
data. It is sometimes referred to as intrinsic variable importance. The goal here is to establish the
relationship between the covariates and the outcome. Instead of looking for an interpretable Al we
look for AI to interpret. Therefore, it is entirely model-agnostic in the sense that we do not need to
impose any underlying model on the relationship between the outcome and the covariates.

We note that these goals do not always align. For instance, consider an outcome related to two
highly correlated covariates. After training an algorithm with a variable selection method, only one
of the two covariates might be used in the model, as we typically aim to minimize the number of
selected covariates while maximizing predictive accuracy. Therefore, the aim of the first problem is
to identify which covariate was selected, while the second problem seeks to recover both covariates.
In this regard, we observe that the second goal should be more stable than the first one. The reason
is that for some models or even instances of a model, one covariate might be selected while the other
is not in the first problem, whereas in the second problem, the recovered solution should be more
consistent. We observe that non-sparse models, e.g. deep neural networks, do not involve variable
selection.

Another problem outlined in ( ) is interpreting feature importance with a model
that does not adequately fit the underlying distribution. In such cases, we may obtain misleading
information about the true relevant covariates because they were not used in the poorly fitted model.

1.3 Marginal vs Conditional approach

Reasoning in marginal and conditional ways poses different questions. For instance, marginal
approaches ask for the global importance of a covariate, while the conditional approach focuses
on the importance of a covariate given the others. As we noted earlier, in the case of dependent
covariates, a conditional approach is essential. Otherwise, the importance of covariates inflates, as
many unimportant covariates are considered important simply due to their correlation with relevant
covariates.

As noted in ( ), this distinction between marginal and conditional reasoning is
significant not only with dependent covariates. For instance, in controlled variable selection, which
aims to discard irrelevant covariates, even in the independent case where the same hypotheses are
being tested, the conditional approach has higher power since the joint model has less residual variance
than the marginal one, except in degenerate cases. Moreover, there are simple examples where

marginal testing completely fails. For example, with independent covariates X1, X5 L Bern(0.5)
and output Y = 1y, 4 x,—1), marginal testing would fail, whereas conditional testing would succeed.

There are also technical issues with marginal approaches. For example, as we will see later, when
using permutation-based approaches, there are extrapolation issues because we do not preserve the
relationship of the covariate with the others. In this case, we are attempting to predict individuals
that do not follow the same distribution. Therefore, using a trained predictor for another distribution
does not make sense.

For all the aforementioned reasons, a conditional approach will be taken.

1.4 Setting

We assume we are dealing with a regression problem, where y € R. Future work will aim to generalize
this assumption by modifying the considered loss function.

We further assume that the output y can be expressed as a function of the input covariates, plus
a centered random noise term that is independent of X.

Assumption 1 (Additive noise). Given y € R and X € R, y = m(X)+ e with € 1L X and E [¢] = 0.



This assumption mainly implies that we can extract all the information about the output through
the function. We note that, for instance, in sensitivity analysis, it is often assumed that the output
y can be directly explained by the input X (see ( )), which is clearly a stronger
assumption.

As is common, this function m is unknown, and therefore we need to estimate it using machine

learning algorithms. We assume access to a sample of data (X;,y;) i Py forie{1,...,n}. To
quantify the importance of each covariate, a training-test split is typically applied: one training set
is used to estimate the regressors, and a separate test set is used to assess the importance of the
covariates based on the accuracy achieved.

1.4.1 On the assumptions of permutation approaches vs removal approaches

As we will see later, there are two main approaches to measure the importance of a covariate j. Both
approaches aim to disable the information provided by the covariate (see ( )). For
the permutation approach we will primarily use, known as conditional permutation importance, we
need to refit a regressor v_; for X J given X 7. In contrast, for removal approaches, we must refit a
model 7_; to regress y based on X ~7. This might seem paradoxical at first, as it raises questions
about why we would do this and whether it’s actually more efficient, especially since we claim that
the permutation method is faster and more stable.

In reality, we are attempting to shift the burden of knowledge, similar to the assumptions made in
Model-X knockoffs (see ( )). Instead of making assumptions about the conditional
distribution of 3 given X, which could be represented by regressing y using X 7, we focus on the
distribution of X, assuming that it is easier to regress among the input covariates. By doing so,
we can use a computationally intensive, heavily trained model m, such as a deep neural network,
just once. We can then employ faster and simpler models, such as random forests, to model the
conditional regressors U_j.

As stated in ( ), this approach could be interesting in several scenarios:

e When we have an unlabeled dataset apart from the labeled dataset used to train the general
model. This may occur, for instance, when obtaining the data is cheap, but labeling the data
is expensive.

e When we know the exact covariate distribution, such as in gene knockout experiments, genetic
crossing experiments, sensitivity analysis of numerical models, and admixture mapping.

e When we have more initial information about the distribution of the input covariates, which is
used to understand a more complex output. For example, when scientists use simple single
nucleotide polymorphisms (SNPs) to understand a complex disease.

Thus, both approaches can be complementary in that we can choose to model the relationship
between y and X, rather than just the distribution of the covariates. However, we want to emphasize
that making assumptions about the relationship between the output y and the input X does not
imply that this relationship is preserved when using the restricted input X ~7. For instance, in a
logistic regression model, the restricted input does not maintain this structure with the output y (see

(2024)).
1.4.2 Conditional null hypothesis

We first observe that if some input covariates are functions of others, it leads to instability in the
selection of important covariates, as there could be multiple valid sets of selected covariates. This



occurs because the problem is not well-defined. To address this, we must assume that none of
the covariates is a function of the others, ensuring that the set of genuine covariates is uniquely
determined. This assumption is standard in controlled variable selection (see ( )
and variable importance (see ( )). Importantly, this assumption is not
restrictive. In practice, we could assume that a small independent noise exists, making each covariate
not an exact function of the others. Under this assumption, which breaks functional dependence, we
can properly define the conditional null hypothesis:

Definition 1.1 (Conditional null covariate). A covariate X/ is said to be conditionally null for
predicting the output y given the other covariates X 77 if and only if y is independent of X7 conditional
on X 7. Otherwise, it is a genuine or non-null covariate.

We observe that we can easily reformulate this assumption by stating that the function m, which
expresses the relationship between the input and the output, does not depend on the covariate. To
formalize this, for a set of functions F := {f : R? — R}, we define the set F_; :={f € F: f(u) =
f(v),Vu,v € R satisfying u_; = v_;}.

Lemma 1.2 (Conditional null hypothesis). Under Assumption 1, the j-th covariate is independent
of the output y conditionally on the rest of covariates if and only if there exists a measurable function
m_; € F_; such that m(X) =m_;(X 7).

Proof. Firstly, we assume that m(X) = m_;(X /), or equivalently, that Y = m(X)+e=m_;(X 7))+
e. Therefore, using that € is independent from X and that m_;(X /) is constant conditionally on
X7, then y 1L X7|X 7.

To prove the other way, we first observe that

E[y*|X77] =E[(m(X) +€)’|X 7] =E [m(X)*|X 7] + o2,

using that e is centered and independent of X. On the other hand, we observe that using the
conditional independence and also that € is centered and independent of X that

E [y X 7] = E [y(m(X) + €)| X ]
=E[y|X 7] E [m(X)|X 7] +E [ye| X ]
=E [m(X)|X7]" + o2

Then, we obtained that as both quantities are equivalent that E [m(X)?/X 7] = E [m(X)|X‘j]2.
We observe that Jensen’s inequality with an strict convex function is only achieved with degenerate
distributions. Therefore, m(X) is o(X ~7)-measurable and therefore there exists a measurable function
that we denote m_; such that m(X) =m_;(X 7).

|

2 Related work

In this section, we present the main methods commonly considered for assessing variable importance.
To gauge the predictive capacity of a feature, we compare the accuracy of the model when using
the information provided by the covariate versus when excluding it. There are several ways to
restrict the model from accessing the information provided by the feature. One simple approach is to
retrain the model without this information, which leads to refitting-based approaches. However, in



high-dimensional settings, this method often encounters problems, as it is computationally intensive
and suffers the accumulation of estimation errors.

Other approaches simply disable the information provided by the covariate by breaking its
relationship with both the output and input, resulting in permutation-based approaches. However,
these methods suffer from extrapolation bias. In the following sections, we first present refitting-based
approaches, followed by permutation-based approaches.

2.1 Variance-based global sensitivity analysis literature: LOCO

Sensitivity analysis attempts to study the fluctuations in the output when the input is perturbed.
Specifically, local sensitivity analysis focuses on a specific input, while global sensitivity analysis
considers all possible input values. Variance-based approaches try to assess the importance of each
feature based on the portion of the variance it explains. ( ) introduced
two well-known quantities commonly used in this context. The first is the first-order effect, which
represents the marginal variance explained by the feature. More formally, it is defined as:

Definition 2.1 (First-order effect). For each j € {1,...,p} and (X,y) ~ P,
Ymarg (4, Po) = V(E [m(X)|X7]) = V(m(X)) - E [V(m(X)|X7)] .

We observe that, being a marginal approach, it does not account for the interactions between
covariates. For this reason, a conditional approach is needed to capture these interactions:

Definition 2.2 (Total effect). For each j € {1,...,p} and (X,y) ~ P,

Yroco (s, Po) :=E [(y —m—;(X~))*] = E[(y — m(X))?] (
=E [(m(X) —m_;(X77))?] (2
=E [E [(m(X) — E [m(X)|X7])*|X7]] (
=E [V(m(X)|X7)]. (

We observe that to go from (1) to (2) we have just used Assumption 1, and to go from (2) to (3) we
have used Tower’s property and that m_;(X7) =E [y|X 7] = E [E [y|X] | X 7] = E [m(X)|X 7].
We observe that this is a well-studied quantity, known as the unnormalized total Sobol index
(see ( )) and as LOCO (Leave One Covariate Out / Leave Out Covariates) (see

( ) ( )). It can also be viewed as a generalization
of ANOVA, as it can be rewritten as:

Yroco(f, Po) =E [(y — m_;(X7))*] = E [(y — m(X))?]

_ E [(y — m(X))?] E[(y —m_;(X))?]
v (1) - (e )

which is the R? difference whenever the covariate is used or not. In the following, we will primarily
refer to this as LOCO.

LOCO is particularly popular for feature screening, which aims to select the smallest set of
features that explain the output. However, estimating LOCO in practice is challenging. A simple
plug-in approach is not effective. On the one hand, it requires a computationally intensive algorithm,




as we would need to retrain a model for each covariate, which is costly. On the other hand, using

flexible algorithms does not yield good results (see ( ))-
First, semi-parametric theory indicates that a one-step correction is necessary to obtain asymp-
totically optimal estimates when applying the plug-in approach in (2) (see ( ).

This one-step correction is not required when applying the plug-in in (1). In practice, sequential
regression is also necessary due to estimation noise, meaning that m_; is no longer trained on (X, y)
but rather on (X, m(X)). Even with this heuristic correction, performance is poor in practice, as
shown in Section 3.4, due to the accumulation of estimation noise.

Moreover, valid p-values for testing the null hypothesis do not exist. Since the LOCO statistic is
a quadratic functional, its influence function vanishes as it approaches zero (see
( ), ( ))- ( ) proposed a valid null-testing
approach based on cross-fitting, which works because, even though the joint influence function in (1)
vanishes, the influence functions of each part do not vanish, except in degenerate cases. However, in
practice, this approach does not perform well (see Section 3.4).

2.2 Shapley values

Marginal approaches do not perform well in highly correlated settings because they may suffer from
many false positives due to irrelevant covariates being highly correlated with relevant covariates.
Conditional approaches do not face this issue. However, they may struggle with making any discoveries.
Indeed, when two relevant covariates are highly correlated, conditional methods such as LOCO
may incorrectly conclude that neither is important. This happens because, with one covariate,
all the information can be recovered, making the other appear irrelevant. To address this, there
has been a push to use Shapley values, which were introduced by ( ) from game theory.
The goal is to assign each player a fair contribution to the game’s outcome. Instead of simply
comparing all covariates vs. all covariates without the one being measured, Shapley values account
for a broader range of relationships between covariates by assessing performance decay across all
possible combinations of covariates with the one being measured. More formally:

Definition 2.3 (Shapley values). For each j € {1,...,p} and (X,y) ~ Py,

N2
Ysnap(Gs Po) = Y wy (E {(y - mS(XS))’Z} E [(y - msu{j}(Xsu{a})) D , (5)
sCi{s}
with w, = L(71) 7
Therefore, we observe that Shapley values are a weighted sum of LOCO values across the
submodels, distributing the signal among correlated features. However, this approach introduces
several estimation challenges. Not only do we face the issue of refitting multiple models, but there is
also a combinatorial complexity since performance needs to be compared across the submodels. In
theory, it is not necessary to compute all combinations, as ( ) demonstrated
that averaging over a linear number of subsets is sufficient.
To address the combinatorial issue avoiding the brute force algorithms, it is possible a Monte
Carlo sampling (see ( ), ( )). For instance,
( ) introduced a Monte Carlo approach using importance sampling, where the prior is
informed by the most important covariates identified by a Random Forest. To mitigate the challenge

of refitting the conditional expectation, some approaches assume a known distribution (see
( )), while others, like SHAFF uses projected random forests (see ( ).

10



Nevertheless, Shapley values suffer from mathematical issues, and their game-theoretic inter-
pretation may not align with human-centered interpretation (see ( )). Moreover,
the preference between LOCO and Shapley values is debatable (see
( )).While it is often claimed that Shapley values address the correlation issues that LOCO does
not, this is not entirely accurate. As shown in ( ), a simple linear
model was proposed where the covariates are highly correlated, but only the first covariate is relevant.
In this case, the importance is spread across all covariates, and as the dimensionality increases, the
importance diminishes. One could argue that this example represents a degenerate case since, in
the presence of such high correlation, the covariates might also need to be considered important.
Furthermore, Shapley values are often defended because they satisfy certain axiomatic properties.
However, these axioms may not be as desirable as one might think.

First, the axiom of linearity requires that the sum of all covariates’ importances equals the total
value of the game. This may not be desirable when covariates are highly correlated, in which the
value of two covariates together should not be the sum of each individual importance (see

( )). Neither it is desirable when using a function m to explain y using X
that is not linear (see ( )). Additionally, Shapley values are not always easily
interpretable. For this reason, ( ) proposed alternative axioms that

may be more appealing, such as ensuring that each covariate’s importance is assessed independently
of its correlation with other covariates. They also introduced another measure that satisfies these
axioms, but it suffers from extrapolation bias, as it may make predictions in regions of low data
density, where the model is not well-trained, leading to inconsistent results. As we will see later,

this is the exact issue that the Permutation Feature Importance (PFI) from ( ) method
encounters.
Moreover, the key limitations of both LOCO and Shapley values discussed in
( ) are in degenerate cases where one covariate is a function of others. In our setting

(see Section 1.4), we avoid such cases, which is why we will continue to use theoretical LOCO as a
reliable measure of importance in this work.

These earlier approaches relied on refitting multiple models to assess importance. In the following
sections, we will explore permutation-based methods, which do not require refitting the output in
response to any particular input, but instead study the relationships between inputs.

2.3 Permutation Feature Importance(PFT)

One naive method to assess the importance of covariate j involves disabling the information it
provides. To achieve this without refitting the entire model, we can permute the covariate, thereby
breaking its relationship with both the other inputs and the output. This allows us to study the
resulting shift in accuracy. In practice, this is simply given by

Ntest

> (s = @) = (i — i(@:)?) | (6)

n
test i=1

'(Z)\PFI(jy Py) =

where the j-th covariate has been completely permuted.
This quantity is also known as Mean Decrease Accuracy(MDA). Theoretically, it tries to achieve
the following quantity:

Definition 2.4 (PFI). For each j € {1,...,p} and (X,y) ~ P,

Yeri(j, Po) = E [(?J - m<X(j)))2} -k [(y - m(X))Q] : (7)

11



Although it is an efficient algorithm because it avoids refitting, and ( ) claims good
performance and statistical validity, this is not the case. ( ) studied permutation-
based variable importance in the context of Random Forests, comparing different estimation methods
used by various software packages. These methods differ, for instance, in whether they use a separate
test set to measure importance or rely on the Out-Of-Bag (OOB) sample, and whether the importance
is computed across individual trees or the entire forest. They showed that the quantity targeted
by PFI (7) is not ideal. It can be decomposed into three components. The first part, which is
desirable, is the unnormalized total Sobol index ¥1,0co introduced in Definition 2.2. The second
is the unnormalized marginal total Sobol index, which can be misleading in the presence of highly
correlated covariates. Lastly, there is a third term that is also problematic, as it increases with
covariate dependence. Overall, this theoretical quantity is not what we truly want, and they proposed
Sobol-MDA, which aims to directly estimate the total Sobol index using projected forests.

Additionally, we note that when permuting covariate j, both the marginal distributions of X7
and X 7 are preserved, but the joint distribution is altered. In assessing the predictive importance of
a covariate, we do not necessarily want to change its relationship with the other covariates but rather
with the output only. Moreover, using a permuted covariate for prediction can lead to extrapolation
bias, as it may involve predicting in regions of low density, where the model is not well-trained and
where such predictions are nonsensical (see ( )s ( ))-
For instance, we could end up trying to predict the weight of a baby measuring two meters in height.
Therefore, the goal of the following method is primarily to break only the relationship with the
output while permuting in such a way that the new samples follow the same distribution as the input
covariates.

2.4 Conditional Permutation Importance(CPI)

In this section, we discuss the method introduced by ( ). When assessing the
importance of covariate j, this approach aims to preserve its relationship with the other input
covariates while breaking only its relationship with the output. To achieve this, they proposed two
methods. The first involves regressing X7 on X7 and then adding a permuted residual to this
regression. More explicitly, for an input z;, given another input x;, the conditional counterpart for

covariate 7 is the vector Ec'z(-j ), where all covariates are preserved except for the j-th covariate, which is
modified as 52(])] =v_j(z;7)+ (] —D_;(z;”)). The second method consists on training a random
forest to estimate X7 using X 7 and then sample from the leaf. Once this conditional counterpart is

computed across the test set, the importance measure is given by

Gontior = == 3 (= A@) - - a)?) ®

Ntest i=1
The theoretical part that it tries to attain is:
Definition 2.5 (CPI). For each j € {1,...,p} and (X,y) ~ P,

Yol Po) =B (y = m(X9)?| ~E [(y = m(x))?] 9)

where X&) 1| X|X 3 X0 ~F = X~ and X ~ XU,

We first observe that (9) introduces a new quantity that is not related to LOCO at a first sight.
The link between both quantities will be established in Section 3.2.
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PFI vs CPI: Both PFI and CPI are permutation-based approaches. ( )
described the difference as PFI having an estimation error, which prevents it from achieving the
same quantity as CPI due to correlation and the high dimensionality of the problems. However, this
is not uniquely due to estimation issues; rather, the theoretical quantities themselves aim to explain
different aspects. Indeed, we will demonstrate this in a simple linear setting.

example 2.6 (PFI vs CPI). Given a linear model y = >0 | B; X" + € where € is centered, with

variance o and independent of the covariates, we observe that

Ypr1(j, Po) = E [(y - m(X(j))Q} —E[(y — m(X))?]

=E (Epjﬂixi te— D BXT X)) o
i=1 i#j

SB[+~ 3 X0~ o

= /B?E (X7 — X")? (using that X7 bLg X"7)

= 28707, (10)

On the other hand, we also have

deri(G, Po) i=E [(y = m(XD2] ~ E [(y - m(X))?]

p
=E (ZﬁiXiﬁ-e—ZﬁiXi_Bj)}(j)j)Q _ g2

i=1 i#j

E [(,Bij te— ﬂjf((m)ﬂ e

-E [(5ij _ 5j)}(j)j)2}
- BE[E[(x7 - X0y x| (using that X7 "= X (07| x )
— 262K [V(X/|X 7). an

We observe that if the j-th column is independent of the rest, then both quantities coincide, and
both estimates should converge to the same value. However, this is usually not the case. For instance,
in highly-correlated setting, (11) vanishes while (10) remains constant.

Conditional sampling: We observe that the step of obtaining X0 is equivalent to sampling
from the conditional distribution X7|X~7. This is not an easy problem. Moreover, we note that no
theoretical study has been conducted on this step to provide guarantees that we are sampling from
the correct distribution in ( ). For this reason, in Section 3.1, we establish the
assumptions under which permuting the residuals provides a valid sampling method.

Type-I error control: The main contribution of this method is that, by leveraging asymptotic
normality, it is possible to provide valid p-values to test the nullity of the importance of the covariates.
The proof of this theorem relies primarily on Theorem 1 from ( ), applied to
both the unmodified predictiveness and the conditional counterpart. Therefore, it is necessary to
prove that the conditional sampling indeed samples from the empirical conditional distribution.
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Therefore, we observe that there is no obvious link between refitting-based and permutation-based
variable importance. Moreover, the only available statistical guarantees offered are for type-I error
control, whereas we would prefer stronger control. This is especially problematic in high-dimensional
settings, where the number of false positives explodes due to the variability of the covariates (see

( )) and the complex dependencies among them.

3 First internship contribution: Theoretical analysis of CPI

As noted earlier, both LOCO and CPI are conditional variable importance measures, meaning they
assess the importance of each covariate relative to the others. However, no formal link between them
has been established thus far. Establishing such a connection would be important, as it could bridge
removal-based and permutation-based approaches. For instance, this would allow us to estimate the
LOCO (also known as the unnormalized Total Sobol index), a well-known quantity in sensitivity
analysis that assesses the variability explained by each covariate, using only a version of the CPI.
This approach would address the challenges of having to refit a model for each covariate, which is not
only computationally intensive but also suffers high variability due to the accumulation of estimation
errors from the regressors.

To achieve this, we first examine the conditional sampling step of the CPI and establish the
assumptions under which it is valid in Section 3.1. Then, in Section 3.2, we establish the link between
removal and permutation-based approaches, which provides a LOCO estimate using the CPI. In
Section 3.3, we introduce Robust-CPI, another permutation-based approach aimed at estimating
LOCO, which seeks to improve stability by averaging across permutations to mitigate potential
extrapolation issues. Finally, in Section 3.4, we present numerical experiments demonstrating that
permutation-based methods exhibit much lower variance compared to refitting approaches.

3.1 On the conditional sampling: the theoretical framework to establish
the validity of the sampling step

The conditional permutation importance methods discussed in ( )(Section 2.4)
and the knockoffs procedure proposed by ( ) rely on the assumption that sampling
from the residuals of inter-covariate regressions, combined with the regression on the covariate of
interest, is equivalent to sampling from the conditional distribution. However, sampling from the
conditional distribution is not a trivial task. Even under Gaussian assumptions, where explicit
formulas for the conditional distribution exist, practical challenges arise due to the need to estimate
the inverse of a covariance matrix, which is computationally unstable in practice (see

( )). Approaches such as normalizing flows ( ), while theoretically sound,
are also impractical due to the large number of training samples required. Another method, proposed
by ( ), involves sampling from the tree leaves instead of taking the average of the

regressed covariate X7 given the rest X ~7. This approach, however, proves ineffective in practice
because it only considers the covariates involved in the splits, ignoring the rest, trying to make it
comparable to a nearest-neighbors method but with only a subset of the relevant covariates. Although
this idea should work, it does not, as there are no supporting theoretical results. Furthermore,
determining hyperparameters, such as the number of samples per leaf to ensure diverse enough
conditional sampling, is not trivial. Consequently, this method struggles in high-dimensional settings
because, with deep trees, no neighbors are found, leading to a lack of diversity. On the other hand,
with shallow trees, the samples from each leaf do not come from the same conditional distribution.
Moreover, the methods that do work are domain-specific generative models (see
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( )). On the other hand, sampling from the residuals and adding them to the regressed part
works well in practice, as it preserves the information from the other covariates. In this section, we
aim to study theoretically the assumptions necessary in this framework. We begin by ignoring the
estimation error U_; in regressing X7 given X 7. First, in Section 3.1.1, we assume Gaussianity,
and then generalize this to assumptions similar to those used in regression models of independent
additive noise in Section 3.1.2. Finally, in Section 3.1.3, we examine the convergence of the empirical
distribution to the conditional distribution by studying the estimation error when the regressor v_;
is consistent.

We recall that given X, X’ two i.i.d. random variables and D_; a regressor of X7 given X7,
X@ eReis given by

T

x4 A (12)
V(X + [XT—D_j(X'79)] ifl=j.

3.1.1 Assuming Gaussian input

We start studying the validity of the method in the Gaussian setting.
Assumption 2 (Gaussian covariates). X ~ N (u, X).

First, we note that if X is Gaussian, then the conditional distribution is also Gaussian, i.e.
Xj|X*]' =T~ N(Ncond72cond) with ficona = i+ Ej,szijl‘v_j(xfj - /fffj) and with Yeong =
X Ej’,jE:;_jE,j,j. Firstly ignoring the estimation error that will be treated later, we begin by
showing that the goal of the CPI sampling step is to attain this distribution.

Lemma 3.1 (CPI sampling step with Gaussian data). Under the Gaussian covariate assumption
(Assumption 2) and ignoring the estimation error of _;, XI|X =7 = 277 is independently sampled
according to the conditional distribution X7|X 7 = z77.

Proof. First, we start by recalling that in the Gaussian setting, we have that X7/| X7 = 277 ~
N(:U'Cond7 ECond) With ficona = Hj +Zj,—j2:}7,j (xij _,u—j) and with Ycong = 254 _Zj,—jz:},, X -

We also recall that X/ X7 = 27/ is sampled from v_;(z ) + (X7 —v_;(X 7)) =
E [X7| X7 =277 + (X7 — E [X7|X ~7])Pe™ Indeed, we first attempt to estimate the predictable
component of covariate j from the remaining covariates for each specific individual, and then we
permute the residuals from these predictions within a test set. We observe that this permutation
step is equivalent to sampling from the residual of an i.i.d. individual.

We note that the first part corresponds to the mean of the conditional distribution by definition
of the regression function E [X7|X 7 = 277] = ficona-

Now, we need to prove that the residuals from which we sample are distributed as centered
Gaussians with covariance ¥.onq, so that, when added to the first part, we obtain the conditional
distribution. First, we observe that

X —E XX = X7 —py =85 2T (X — ).

=7

Then, it is a linear combination of coordinates of a Gaussian vector therefore Gaussian. We easily
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observe that it is centered. Finally, we compute the variance as
V(X7 =y = %5 275 (X = py)
= V(X9) + 35,57 VXTSI 85, = 2B (X7 = 1)), 575 (X7 = py)]

J
=% +%, 5505 ;55— 2%, 557 8,
=Y. % 51!

—J.—J
IR R Y R DI YRy
We observe that this is exactly Yconq. Therefore,

XDI (X7 = 277) = peona + (X7 —E [XT|XTI])P™ ~ piona + N(0, Scond)-

3.1.2 Towards a more general assumption

We observe that the Gaussian assumption can be generalized. In fact, the only requirement is that
the residuals must be identically distributed and independent of the other covariates, ensuring that
all the information X =7 could provide about X7 has been fully extracted.

Assumption 3. For each j € {1,...,p} we have that there exists a function v_; such that
XI=v_j(X77)+¢; withe; 1L X7 and Ele;] = 0.

We first notice that this assumption is exactly the one given in the regression model (Assumption 1),
but applied to each column instead of only to the output y.

We observe that this function v_; is exactly the conditional expectation because

E[XXTV]=E vy (X7) +¢[X 7] =vy (X7).
Therefore, the empirical approximation will consist on regressing the column and adding a permuted
residual giving the CPI sampling step.

We also notice that the Gaussian assumption (2) is included in this assumption. To see this, we
observe that we can decompose each column as

X =E[X/|X7]+ (X' -E[X/|X77]).

We can denote v_;(X /) := E [X7|X 7] and ¢; := X7 — E [XJ| X ~J]. First note that ¢; is centered.
Then, to see that they are independent, as they are each Gaussian variables, we just need to prove
that their covariance is null:
E[(v; (X77) -E[X']) (X7 —E[X/|X])]
=E[E[(v-; (X7) -E[X]) (X) - E [X?|X 7])[ X ]
=E[(v; (X7) -EX]E[X -E[X|XV][x]] =0
Therefore, we have observed that Assumption 2 fulfills Assumption 3.
Finally, we easily observe that under this assumption, the CPI sampling step samples correctly
from the conditional distribution:
Proposition 3.2 (CPI sampling step with independent residuals). Under Assumption 3 and ignoring
the estimation error of U_j, X3 Vit XX =7,
Proof. We first observe that for X’ &' X we have that X/ — v_; (X'=9) e
Finally, we observe that X7| (X7 =279) = ¢; + v_;(z7) S (XY —v_j (X'79)) +v_j(z77),
which is exactly the theoretical CPI sampling step, i.e. first we compute the conditional expectation
v_;j(z77) with the regressor v_; and then we add a permuted residual (X7 —v_; (X'77)). d
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3.1.3 Empirical conditional distribution

We observe that we do not have directly the regressor v_; but just an estimate of it 7_;. However,
the next proposition shows that if we use a consistent estimate, we are going to asymptotically sample
from the desired conditional distribution. To do so, we need our estimate U_; to be consistent, i.e.

E[(0-5 (X77) = vy (X 7)] =0

We observe that for instance, the Random Forest satisfies this property under some mild assump-
tions (see ( ).

Proposition 3.3 (Empirical conditional sampling). Under Assumption 3, if the regressor is consistent,
then the CPI sampler is going to asymptotically sample from the conditional distribution.

Proof. In this proof we are going to use the usual 2-Wasserstein distance which is given by

1
< inf /||a?—y||2dP9(dX,dy)> ,

PoeO(p,v)

where ©(u,v) is the set of distributions with marginals p and v.

We define P the conditional distribution which using Proposition 3.2 has the same distribution as
E [X9|X 7] + (X" —E [X"|X'~7]). We also define the empirical couterpart by P :=D_; (X 7) +
X' —p_; (X'77). Now, we bound the distance between them:

1
2

Wao(P,P) = ( inf / (z — y)? Py(dx, dy)>
) R2p xR2P

Pye©(P,P
1
2

< ( /R , BLOXT] 4 (X7 - E[X7XT]) =0 (X77) = (X7 =Dy (X'~7)))? Py (dx) Py (dxf))

2

B </}Rz<p1> (v—j (X77) —vy (X)) =D (XT) + D (X/_j))QPXfJ (dx7)Pyxr—s (dx/j)>

< (B[ (o () =5y ())& [0y (59) =0y () ])

We conclude using that both terms converge to 0 by the consistency of the regressor. O

3.2 LOCO vs CPI: Link between removal and permutation based ap-
proaches

We observe that both the LOCO and CPI approaches aim to assess the decrease in accuracy when
the information provided uniquely by the covariate of interest is excluded. In the LOCO approach,
this is done by directly training the model without the covariate. In the CPI approach, however,
the model is reused while attempting to exclude only the information uniquely provided by the
covariate by permuting it conditionnally on the rest. The relationship between the quantities being
estimated by these methods is not immediately clear. Specifically, the connection between LOCO,
which corresponds to the unnormalized total Sobol index, and Permutation Feature Importance
(PFTI), also known as Mean Decrease Accuracy (MDA), was established in ( ) (see
Section 2.3). In this section, we will demonstrate that, unlike PFI, the theoretical estimation in
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LOCO does not involve any undesirable terms, but rather only the unnormalized total Sobol index
multiplied by a constant.

We recall that ¢cpr was defined in (9) as E {(Y - m()?(j)))ﬂ —E[(Y —m(X))?], which can be

developed as

Yeri(j, Po) =

— E [2E [(m(X) — E [m(X)|X 9])2| X ~]] (using that X "X X0)|x 1)
= 2E [V(m(X)|X )]
= 2¢Loco(J, Po).

Therefore, we could easily correct the CPI to estimate the LOCO by directly dividing it by 2:

Definition 3.4 (0.5CPI). Given a covariate j, a training sample of size ny,in and a test sample of
size Myesy, We train the regressors m and U_; over the train set, we compute the residuals over the
test set, and the new LOCO estimate is given by

Wo.scp1(d, Po) = 27; - > ((yi —(@?))? ~ (yi — ﬁ@(mi))2> .
oSt =1

We observe that this estimate relies primarily on the idea discussed in Section 1.4.1. Specifically,
we compute this LOCO estimate without needing to refit a model on y given X ~7 for each covariate
j. Instead, we regress X7 on X 7. This leverages the fact that while the relationship between y and
X may be complex and require training long and complicated models, the relationships among the
input covariates are simpler, allowing for the use of faster and simpler regressors. Building on this
idea, in the next section, we will introduce an alternative LOCO estimate designed to reduce the
variance of the method by averaging over multiple conditional samplings. This approach reduces
variance while remaining as fast as the original method, as it eliminates the need to refit a model
and only requires predictions over other permutations, which is quick and efficient.

3.3 Robust-CPI: a new approach to estimate LOCO

As discussed before, one of the main obstacles in using approaches such as LOCO is that they require
retraining the model for each covariate j to test its importance. Such computational burdens can be
very costly, making these approaches impractical. Moreover, in practice such approaches are instable
due to the optimisation error made by m and m_;. One way to possibly overcome this barrier is
to use the following Towers property: m_;(X) =E [Y|X 7] =E [E[Y|X]|X 7] = E [m(X)|X 7].
Therefore, instead of retraining a new model m_; for each covariate, we only need to take the average
across different predictions where X7 is fixed and we sample the j-th coordinate independently
from the conditional distribution:

Ncal

> (X9,

Ncal =1
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where for each i € {1,...,ncal}, )Z'i(j)] i X7|X~9. Therefore, we will have for each coordinate
neal Samples. In particular, if it is 1, we recover the exact CPI, and using the consistency of the
regressor and the law of large numbers, as nc, tends to infinity, we recover the restricted regressor.
We are trying to reuse the same idea from the removal versus permutation approach, where refitting
a complete model is expensive, but making predictions is relatively inexpensive. Moreover, if we
apply the conditional sampling step of the CPI, as proven valid in Section 3.1, the only requirement
would be to use more permutations from the residuals without needing to retrain any model. This
approach would increase stability without incurring additional costs. It should also improve the
stability of the method compared to the estimation done by 0.5 x CPI. This is because, even with
conditional sampling, extrapolation issues can arise when predicting in regions where the regressor
was not trained. By taking the mean, we can enhance stability in such cases.

We observe that while trying to estimate m_; using only the already trained regressor m could
be directly related to the problem of predicting with missing values. Indeed, in the missing values
framework, the Bayes predictor can be decomposed pattern-by-pattern. There are some specific cases
in which some shared information across the patterns can be used to efficiently use this decomposition
(see ( ) for regression and ( ) for classification). However, this is
not the general case and usually there is a computational burden to estimate a regressor for each
missing pattern, which is similar to the computational burden for the LOCO (indeed it is not the
same because for the LOCO we only restrain one coordinate and therefore there would be a need to
retrain d models while in the missing data there would be one for each missing pattern, and therefore
potentially 2¢. This is what happens with Shapley values. Moreover, with missing data we could
only use the data sharing the same missing pattern, and therefore, much less than in the LOCO
without missing data). Nevertheless, there have been some studies to predict with missing data
using the global model. For instance, ToweranNA (see ( )) have tried to
predict on a missing input using the global model by predicting on the closest input value across
the complete data. However, it relies on the neigborhood concept that is lost with the curse of
dimensionality. Therefore, another idea that we could use would be the previous Tower’s property
with the conditional sampling, giving this estimate:

Ntest Ncal ) 2
Yroco (j, Po) = ! > <yz - Zm@%)> — (yi — (2:))°, (13)
k=1

Ntest =1 Tcal

where Efjlz the —j-th coordinates fixed to the observed coordinates of x;j, and the j-th coordinate
conditionally sampled on the rest. In practice, under Assumption 3, using Proposition 3.3, we could
conditionally sample in the following way:

{xg. if 15

FUh _ _ ] )
b () + [x; — o (x| 1=

ik = (14)

We first note that this estimate is consistent:

Proposition 3.5 (Consistency of LOCO’). Under Assumption 3, assuming the consistency of the
regressors m and U_j, then

Ntrain,Mtest Mcal —> 0O

Yrocor (4, Po)

Yroco(j, Po)-
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Proof. First of all, we note that by Assumption 3 and the consistency of U_;, we can apply Proposi-
tion 3.3 to proof that the sampling step does sample independently from the conditional distribution.
Therefore, applying the consistency of m and the LLN, we can obtain that

1 TMcal ol - ) . .
MF) Lo (X)X = 27| = (a),
Ncal h—1
Finally, we conclude using the continuity of the function g;(x) := (y; — 2)? and another time

the LLN over the test set. For the second part of the sum we use also the consistency of m, the
continuity and the LLN.
O

In practice: We do not need three separate samples to compute this estimate. In fact, the
calibration set is not necessary; the only requirement is that the residuals, from which we sample the
conditional distribution, are computed fairly, meaning they cannot be derived from the same training
sample. Otherwise, the residuals would be artificially small due to overfitting. Therefore, in practice,
we can simply obtain the residuals from the test set, as the regressor U_; is trained on the training
sample. This test set is also used to compute the variable importance measure using the trained
regressors. However, to preserve the diversity of the residuals, we cannot let n.,; increase indefinitely,
as it is constrained by the number of test samples. In practice, we fix the number of calibration
samples, N¢a1, which introduces a small bias. As observed in the previous section Section 3.2, when
Ncal 1S set to one, we estimate twice the LOCO. This bias can be easily analyzed and corrected for
an arbitrary nca:

Proposition 3.6 (Bias of LOCO’). Given ne, < 0o, assuming Assumption 3 and the consistency of
the regressors m and U_j;, then

< . train;Ntest 1 .
Procor (j, Py) —ramles 222, (1 + > Yroco(J, Po)-

cal

Proof. The first part of the proof to obtain the asymptotic quantity is exactly the same as in the
proof of Proposition 3.5, but without applying the LLN to nc,. This quantity can be developed as

E <y— ! fmo?f”)) —E [(y — m(X))?]

n
cal i—1

i=1
= n%l iE {(m(X) m(Xl(J)))z} + % ZE {(m(X) m(X9))(m(X) m(X(]))):|
o cal i<k
= B [(m(X) = ()] + - SO [m(X) (X)) (m(X) - m(E)]
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For the second part, we observe that

E[(m(X) = m(X)(m(X) = m(X)] = E [m(X)(m(X) = m(X)] = E [m(X)m(X) = m(X)] .

The second term vanishes:

E [m(X?)(m(X) = m(X)] = E [E [m(X2)(m(X) - m(XP))|x ]

=0.
Now we observe that the first term is exactly LOCO:

E [m(X)(m(X) - m(X)| = E [m(X)? = m(X)m(X)]
= E[m(X)?] - E [E [m(X)m(X)|x ]|
= E [m(X)?] ~ E [E [m(X)|X /] E [m(X{)|x ]|
= E [m(X)*] = E [m—;(X77)°],
and
Yroco(j, Po) = E [(m(X) —m_;(X7))?]
= B [m(X)?] 26 [m(X)m_; (X )] 4 E [m_; (x)?
=E [m(X)*] = 2B [E [m(X)|X V] m_;(X7)] +E [m_;(X77)7]
— B [m(X)?] ~E [m_, (XY
Therefore we have
R i WX) = m(E)] + = B [m(X) - m(E)m ()~ m(EL)
ca ca i<k

1
= ——2Yroco (), Fo) + ZUJLOCO (J, Po)

cal Cal i<k

ncal(ncal - 1)

1 . 2 )
= 2¢Loco(J, Po) + —5—YrLoco (4, Po)

cal cal 2

1 .
(1 + )d’LOCO(J»PO)'
Ncal
O

Therefore, we can simply correct this bias of this averaged estimate by multiplying by nca1/(nea+1).
This gives the Robust-CPI:

Definition 3.7 (Robust-CPI). Given a train, test and calibration set, we define the Robust-CPI
estimate as

2
. ‘ Nea 1 Ntest 1 MNcal s R
YRobust—cp1(J, Po) = " 141—1 ( E (yz - § m@%)) —(yi — m(wi))z) ) (15)
ca.

Ntest P Tlcal 1

(J)

where 7, is computed as in (14).
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We observe that all the consistency of this estimate is obtained using the previous tools for the
LOCO".

3.4 Numerical experiments

In this section, we compare direct-LOCO estimates that attempt to estimate LOCO by refitting with
those introduced in this chapter using permutation-based approaches. In the first group, we use
either the initial naive estimate of LOCO, implemented in the experiments of ( )
(denoted as LOCO-AC), or the bias-corrected version from ( ), implemented
in the Python package VIMPY (denoted as LOCO). For the permutation-based approaches, we
first compute &0.501:1 from Definition 3.4, followed by JRobust_cpl from Definition 3.7. We will also
compute the PFI, defined in Section 2.3, to demonstrate that this quantity has no relation to the
LOCO quantity we aim to estimate and that it indeed has extrapolation issues, which are reflected
in the high variance of its results.

In the first two experiments, we consider a simple linear model, and in the following experiments,
we increase the complexity by augmenting the dimensions and introducing non-linearity. For the
more complex settings, we exclude LOCO-AC due to its computational intensity and its inferior
performance compared to the method from ( ). Overall, we observe that
permutation-based approaches generally have much lower variance than refitting-based approaches,
as they do not accumulate the error from repeatedly refitting the model. We will also observe that,
although ( ) claims to provide valid estimates of LOCO and valid confidence
intervals for null hypothesis testing, this approach does not perform as expected in practice.

In practice, n denotes the total number of available samples used to compute each importance
measure. Thus, sample splitting will be performed to train the regressors and another to compute
the importance measure. To obtain more stable estimates, a cross-fitted version is used, where the
final result is the mean of the measures across the folds. We will use 5 folds for the LOCO method
of ( ) and 2 folds for the other methods, which will still demonstrate greater
stability. Moreover, the CPI approaches are also parallelizable. Each experiment is repeated 3 times
to get the variance of each method.

3.4.1 Linear setting

In this first experiments we study the effect of correlation and the convergence rates with a simple
and low-dimensional linear setting.

Effect of the correlation: We empirically study the estimation of LOCO using previous methods
in a simple setting that can be theoretically analyzed (see Example A.1). As seen in Figure 2, even
in such a simple case, when the number of samples is insufficient, there is still some bias in achieving
the theoretical quantity across all methods. Moreover, the direct-LOCO method estimates exhibit
much greater variance, as there are multiple regressors to estimate, and their errors do not couple as
expected.

The PFI has nothing to do with the interest quantity and even in this easy setting there is a
really high variance.

Convergence rates: Using the exact same setting as before, with the correlation between the
covariates fixed at 0.6, we observe the behavior of the various methods as the number of available
samples changes. On the left of Figure 3, we see that the importance of the first covariate is
greater than that of the second, as its coefficient is higher. We also observe that permutation-based
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Correlation effect in a linear setting

— 0.5*CPI
PFI

—— LOCO

—— LOCO-AC

—— Robust-CPI

______ 312(1—92)

Importance of Xy
Importance of X;

00 02 04 06 08 00 02 04 06 08
Correlation Correlation

Figure 2: Setting: n = 100, n¢y = 100,y = BoXo + f1 X1 + o€ with o = || X5||2/SNR, SNR = 4
the signal-to-noise ratio, € a standard centered Gaussian and [8y, 51] = [2, 1]. The black dotted line
represents the theoretical quantity. The x-axis represents the correlation between Xy and X;. On
the left is the importance of X, and on the right is the importance of X;.

approaches tend to converge faster and give more accurate results than the other methods, with lower
variance. This is even more remarkable with a small number of training samples, as the variance of
refitting-based approaches is very large.

3.4.2 Non-linear setting

In the following experiments we will sample the input X ~ N(u,Y) with ¥ a Toeplitz matrix, in
which the entry 4,7 is pl*~7. Then, the relationship with the output is given by y = XoX11x,50 +
2X3X41x,<0.

In this setting, an explicit form of the theoretical LOCO is not obvious. Indeed, if y = 0, we have
an explicit form (see Example A.2), but otherwise, we do not. In cases where we do not have the
explicit form (in the following two experiments), we compute LOCO with a large number of samples
to obtain an asymptotic estimate. For a fair comparison, this is done using the LOCO estimator by
Williamson et al. (2021a). Nevertheless, we will show that, in any case, this should not be taken
as ground truth, because even with a large number of samples, it is not a reliable quantity. In the
last two experiments, where p = 0, it is possible to compute the theoretical quantity. However, to
demonstrate that the previous asymptotic estimate is not reliable, we also compute the asymptotic
LOCO from Williamson et al. (2021a) in this case, where the ground truth is known, and observe a
significant bias. Additionally, we compute the 0.5CPI and Robust-CPI with the same number of
samples and achieve better performance. Future research will study these experiments in more detail.

Convergence rates: In Figure 4, we first observe that the LOCO method of Williamson et al.
(2021a) exhibits very high variance. In fact, it assigns importance to covariates that are not important
(see the two figures on the right), which even the PFI recognized. On the other hand, the permutation-
based methods are much more stable from the beginning, even with a small sample size, producing a
line much more parallel to the x-axis and more concentrated across the experiments.

23



Convergence rates in a linear setting
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Figure 3: Setting: nc, = 100,y = SoXo + 1 X1 + o€ with o = || X 8]|2/SNR, SNR = 4 the signal-to-
noise ratio, € a standard centered Gaussian and [Bo, 81] = [2, 1]. The black dotted line represents the
theoretical quantity. The correlation between Xy and X is fixed to 0.6. The x-axis represents the
number of samples available to compute the importance measure. On the left is the importance of
Xo, and on the right is the importance of Xj.

Effect of the correlation: We study the effect of correlation in two different settings. The only
change will be the mean of the input covariates X: it will be shifted from p = 1 in Figure 5 to u = 0
in Figure 6.

First, in Figure 5, we observe that, as usual, LOCO from Williamson et al. (2021a) exhibits higher
variance. Moreover, we observe from the dotted black line that even asymptotically, it does not yield
good results. Indeed, even with n = 100000, it fails to capture the nullity of covariate 6, as seen in
the fourth experiment of Figure 5. Therefore, with a small training set, it suffers from significant
variability, making the results unreliable and even with a large number of samples, it fails to discard
null covariates.

Next, in Figure 6, we centered X. As a result, covariates Xo and X; lose some importance because
covariate Xo is now centered, causing both parts of the function y = XoX1Ix,>0 + 2X3X4lx, <0 to
be used more uniformly. We observe that this reduces the importance measures for the first two
covariates, which nearly vanish in Figure 6 for the permutation methods. However, this is only due
to the model not being well-trained. When we increase the number of training samples (see the
dotted lines) to n = 10000, we observe that the permutation-based methods achieve good results
in estimating the theoretical quantity. Furthermore, even with a small number of training samples,
they were able to reject the null covariates.

On the other hand, LOCO from Williamson et al. (2021a) was unstable. With a small training
sample, it exhibited high variability and failed to discard the null covariates. Even with a larger
training sample (green dotted line), it was inaccurate in finding the theoretical quantity for the
non-null covariates (see the two left images in Figure 6) and was unable to control for the null
covariates (see the fourth image in Figure 6).

Effect of dimension: In Figure 7, we study the effect of increasing the dimension of the input
covariates X. We observe that the difficulty increases with the dimension. In this case, it is possible
to compute an explicit expression for the importance of Xy (see Example A.2). The gray-dotted line
stands for this theoretical quantity. We observe that not only do none of the methods estimate this
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Convergence rates in a non-linear setting
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Figure 4: Setting: y = XoX11lx,>0 + 2X3X41x,<0, with X ~ N(p, %), where ¥, ; = pli=il,
p=>50,p=0.6,u =1 and n¢, = 100. The black dotted line represents LOCO of Williamson et al.
(2021a) with n = 100000. The two figures on the left represent important covariates, while the two
on the right represent non-important covariates.

Correlation effect in a non-linear setting with not-centered X
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Figure 5: Setting: Yy = X0X1]1X2>0 + 2X3X41X2<07 with X ~ N(M,E), where Ei,j = p‘i_j‘,
p =>50,n =300, =1 and n¢y = 100. The black dotted line represents LOCO with n = 100000.
The two figures on the left represent important covariates, while the two on the right represent
non-important covariates. On the x-axis, we vary the correlation p between the covariates in the
covariance matrix 3, which is Toeplitz.

quantity accurately with a small number of samples, but even with a large number of samples, the
LOCO method of Williamson et al. (2021a) does not correctly estimate it (see the green dotted line)
while the methods presented in this work do estimate correctly the quantity. Additionally, it fails to
assign zero importance to non-important covariates and exhibits high variance.

4 Second internship contribution: Controlled variable selec-
tion using CPI and variants

In the literature, LOCO is commonly used for variable selection, as the goal is to obtain the minimum
set of features that can explain the output. For this reason, multiple approaches, such as Sobol-MDA
(see Bénard et al. (2022h)), propose algorithms that sequentially remove features based on their total
Sobol index. However, this is done without guarantees regarding the selected set. Williamson et al.
(2021b) proposed some confidence intervals, which not only fail to provide sufficient statistical control
in high-dimensional settings but, as shown in the previous section, also exhibit bias because they are
refitting-based methods. Under the null hypothesis, they were unable to discard features in practice.

25



Correlation effect in a non-linear setting with centered X
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Figure 6: Setting: y = XoX1lx,>0 + 2X3X41lx,<0, with X ~ N(p, %), where ¥, ; = pli=il,
p =50,n =300, u = 0 and n.,y = 100. The two figures on the left represent important covariates,
while the two on the right represent non-important covariates. On the x-axis, we vary the correlation
p between the covariates in the covariance matrix 3, which is Toeplitz. The dotted lines stand for the
estimation of ¢,oco with n = 10000 using the LOCO of Williamson et al. (2021a) (AsympLOCO),
the Robust-CPI (AsympRob) and the 0.5CPI (AsympCPI).

Dimension effect in a non-linear setting

1 15 2
— 0.5%CP 15

- 10 = o

PF N < 10 X 10 x 1

— 10CO ) 5 s S
—— Robust-CPI S 3 Y os g o

c c c c
------ AsymplOCO = ° = = 2.

v £ o0 g t
------ AsympRob g -os g g oo 2
------ AsympCPI E E -os = E-
-== Theoretical e -0

20 40 60 BD 100 20 40 60 80 100 20 40 60 80 100

20 40 60 80 100
Dimension Dimension Dimension

Dimension

Figure 7 Setting: Yy = X0X1HX2>Q + 2)(3)(41)(2<07 with X ~ N(M,E), where ZiJ = p‘i_j‘,
p=0.6,n=300,u =0 and n¢, = 100. The two figures on the left represent important covariates,
while the two on the right represent non-important covariates. On the x-axis we vary the dimension
by adding null covariates. The dotted lines stand for the estimation of ¥oco with n = 10000 using

the LOCO of Williamson et al. (2021a) (AsympLOCO), the Robust-CPI (AsympRob) and the 0.5CPI
(AsympCPI).

For this reason, we have proposed more stable estimation methods based on permutation approaches.
In this section, drawing from the knockoffs literature, we will provide robust statistical guarantees
that rely on permutation approaches, which are both powerful and stable.

Knockoffs provide a popular framework for conditional independence testing. The goal of
conditional independence testing is to test the importance of each covariate X/ given the rest X 7
on predicting an output y. Therefore, it tries to understand if the variable remains informative,
knowing the other covariates. This is a hard problem (see Shah and Peters (2020)).

Moreover, in high-dimensional settings, as usual with the multiple testing, there is a need for some
statistical guarantees on the selected covariates, which are not usually provided by many commonly
used methods such as LASSO(Tibshirani (1996)). Indeed, in controlled variable selection, we try to
provide these guarantees for the selected variables. Formally, we denote by Hg := { jry Al XJ |X _j}
the unimportant covariates and Hy := {j : y#’X’/|X =7} the true unknown support, called the
Markov blanket on graphical models. Then, we want to control the False Discovery Rate(FDR) of
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the selected set S presented by ( ), which is the expectation of the False
Discovery Proportion (FDP), given by

~

FDP(S):=L—— 1  FDR(§):=E [FDP(S’)} . (16)

We observe that the FDP measures the rate at which non-important covariates are incorrectly
discovered as important. Traditionally, there are classical methods that control this quantity, such
as ( ). However, these methods rely on strong assumptions about
the relationship between the p-values, such as weak Positive Regression Dependency (see

( ) for more details). Moreover, this kind of assumptions does not make sense while considering
conditional approaches, as the relationship between p-values across the covariates can be complex.
On the other hand, procedures like ( ) do not require these assumptions,
but they sacrifice the power of the test. This is because FDR control only addresses one side of the
issue: it says nothing about the power of the test. Therefore, the goal is to develop a methodology
that is not overly conservative while still controlling the FDR.

In Section 4.1, we provide an introduction to the knockoffs framework. In Section 4.2, we first
discuss some pitfalls of a method that works well in practice but does not satisfy the theoretical
properties of the knockoffs and then we adapt this method to create valid knockoffs. Then, in
Section 4.3, we use this procedure to develop a method that controls the FDR by leveraging Shapley
values to create a new statistic. Finally, in Section 4.4, we introduce a new parallelizable method
that controls the FDR, with numerical experiments in Section 4.5 demonstrating its effectiveness.

4.1 Mathematical framework of knockoffs

The knockoffs provide a framework to control the FDR (see ( )). The underlying
idea is to sample from a distribution X that follows the same distribution as X but does not preserve
the relationship with the output y. In this way, they can construct a statistic based on the original
and the knockoff sample so that if the j-th covariate is important, there is a significant difference
between the two.

More formally, there are three main ingredients: the model-X knockoffs, the feature statistics and
then choosing a data-dependent threshold.

Definition 4.1 (Model-X knockoffs). For a random variable X, it is a new random variable X
constructed satisfying the following two properties:

1. For any subset s C {1,...,p}, the original and the knockoff variables are exchangeable, i.e.
~ d ~
(Xv X)swap(s) = (X7 X)

2. X 1 y|X.

We observe that the second property can be obtained by constructing the knockoffs without using
the output.

Next, we need to construct insights on the importance of the coordinates on predicting the output
compared with the knockoffs that do not preserve the relationship with the output. This is done by
the feature statistics.

Definition 4.2 (Feature statistics from (2017)). It is a vector W = (Wq,...,W,) € RP
where each coordinate W; satisfies
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1. It is a function of the input X, the knockoff X and the output y: W; = w; ([X, )Z'] ,y).

2. It satisfies the flip-sign property:

B - w»([X,)?],y) if jes,
wa‘([X’XLwap(s)’y)_ Jw]([xf(}y) itjes.

One popular choice of knockoff statistic is the Lasso Coefficient Difference (LCD) which consists
on first training a Lasso estimate by solving the following problem:

1 ~
in —|ly — [X, X]b[|3 + Al[b
Juin oy — [X, Xbllz + Allblls,

where the value of A does not need to be fixed in advance. Then, we simply compare the difference
between the original coefficient estimate with the knockoff one : w; = |b;(A)] — |bj1p(N)]-

Finally, we select a data-dependent threshold for the knockoffs statistics. To do so, we first
observe that

H M W2 t) S 4 eHo Wy < —t) <#{j: Wy < 1}
Therefore, the FDP that is given by

C#{GEeHo W >t}

FDP(t) := AW S0
is estimated by
. #{ W <t}
IR D

as Ho is unknown.

This estimation should be precise, as there should not be many genuine signals with negative
feature statistics, since it is expected to measure their importance. Therefore, by denoting W :=
{W;]:j=1,...,p}\{0}, one idea to control the FDR would be to choose the threshold as

B W, < 1)
#U:w;zﬂv1<q}

Tq:min{tEW:

and 4oo if empty. Nevertheless, this quantity does not control exactly the FDR but a modified one
(see ( )). To control the original FDR they have introduced a bias corrected
version:

. 1+#{j: W; < -t}
T = teWw: < . 17
4 mm{ #owi vl {17)
Moreover, ( ) proved that this is equivalent to apply the traditional BH procedure

(see ( )) on some generated intermediate p-values.
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4.2 Non-exchangeability of knockoffs: a review of ( )

The construction of Model-X knockoffs, as defined in ( ), is not as straightforward
as it may seem. In the original work, the authors rely on certain Gaussian assumptions that allow
them to sample from a conditional distribution, thereby guaranteeing the exchangeability property
(property 1 in Definition 4.1). However, in practice, especially in high-dimensional settings, even
under Gaussian assumptions, this approach does not perform well because it requires estimates of
the inverse of the covariance matrix, which is often poorly estimated. Therefore, there is a real need
to generate knockoffs in practice that satisfy the exchangeability property while differing sufficiently
from the original sample in order to maintain a powerful method.

To address this issue, ( ) proposed a method to directly sample knockoffs in a
manner similar to the CPI sampling step. To create the j-th coordinate of the knockoff, they first
regress the original j-th coordinate on the remaining variables, then add a random residual. While
this method works in practice and has the advantage of being parallelizable, the knockoffs described
in ( ) do not actually satisfy the desired exchangeability property.

Therefore, in this section, we begin by demonstrating the non-exchangeability of these knockoffs
in a standard Gaussian setting. We then propose a sequential alternative that addresses this
non-exchangeability issue.

4.2.1 Non-exchangeability in the Gaussian setting

In this section we show that the exchangeability of the proposed Model-X contruction in
( ) does not stand in standard cases such as Gaussian data. To see this, we first observe that if
the covariate matrix is Gaussian, we do need the joint distribution to fulfill

(Xl,...,XP,)?l,...,)?P) ~N(<Z> <g_£ag(s) EdEiag(S)»’

for some s such that the covariance matrix is still positive semidefinite. We will observe that the
covariate property between the knockoffs with the other knockoffs is not satisfied. We begin by
ignoring the optimization error for the conditional sampling due to the estimation of v_;, which is
the regressor of X7 using X 7. We begin by simplifying the knockoff expression using Gaussianity
similarly to what was done in Section 3.1.1:

X =E[XI|X 7]+ X7 -E[X"7|X7]
= (1 + %5875 (X7 =) + X7 = (5 + 35,5755 5 (X7 = py))
= X7 4% N (X=X

We easily observe that the mean is preserved for the knockoffs, and that the variance of each
knockoff, as well as the covariance between a knockoff and an original covariate, is also preserved:

« B[X] =B [X9 43, ;50 (X9 - X'79)] =y,
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e For any j € {1,...,p}:

E [()?J - Nj)z] =E [(X/j — i+ 85575 (X - lej)ﬂ

=B (X7 = p)"| +3, 550 E[(X T - x) (X - x| =0 m
FRE [(XY ) By, 07h (X - X))
=%, +2% 50 88T B, — 2% 8]

—J,—J —J;—jE_
= Y-

J»J

e Without loss of generality, for readability sake, we choose the first knockoff covariate and the
second original covariate (it works for any j #1 € {1,...,p}):

B [(R! =) (6 = )] = B 91087 (X7 X)) (6 )]
=%, 37 LE[(XT = X7 (X7 — )]
(using that X't 1l X?)
= Z1,—1217_12—1,2
= z31,—12:%,,12—1,—1 (1,0,...,0)
= 2:1,27

where in the second-to-last line we have used that ¥_; 5 is the first column of ¥_; _;, and
therefore we could rewrite it as ¥_; _1 (1,0,...,0).

Without loss of generality, and for readability, we take the first and the second covariates of the
knockoff and compute the covariance between them to show that it is not ¥, 5 as it should be. Indeed,
with this procedure, we could either add the residual from the same individual to each coordinate of
the knockoff or add different and independent ones. We are going to show that in both cases, the
covariance is not the desired one:

Residuals from independent samples: Let X’ R xo , then we have that the covariance
between the first and second knockoff is given by:

B[ =) (22 )]
=E[(X" =+ S50 (X =X (X" = o+ 9, 0875 5 (X2 = X"7?)))]
=E[X, 80, (X =X 080y, (X 2= X" (using X' 1L X")
=115 4E [(X_l XY (x? - X"_z)q S5 o5 2n (using a” = a for a € R)
=¥1,957] 151,287 58 00

To see that this does not coincide with ¥; 2, we may observe the simple two-dimensional unit
variance random variable with covariance p. In this case, we have that ¥, _; = p, Zj,q =1,
Y _1,2=0p, 2:57_2 =1land ¥_23 =p, so

Cov ()?1,)?2) =p3.
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Residuals from the same sample: When the knockoffs are constructed using the residuals from
the same sample, the covariance is given by:

(5 w) (%)
=E[(X" #2087 (X7 - X7 (X7 8 587, (X2 - X))
—E[(X" — ) (X2 = i2)] +E [So, 257 (X2 X772) (X" = o)

F T (X - X (X2 )]
+E D30 (X =X B 0BT L, (X2 - X))

The first term gives ¥; 5. The second term can be simplified as

E (2 o575 5 (X 2= X'72) (X" — )] = =52, 2275 »,% 01
= *22,—22:%,,22—2,—2 (1,0,...,0) = =Xy ;.

Similarly, the third term provides

BT E (X - X (X - )] = -8 80 B

=%1,180] 181,21 (1,0,...,0) = =Xy 5.

Finally, the last term can be simplified as
E[S1,180 4 (X7 =X 8 080 5, (X2 = X"7?)]
SN [(X*1 XN (X2 - X’*‘Z)T} O SO I
= 221,—1221,_12—1,—22257_22—2}

Therefore, combining the previous, we obtain
E [(f(l - Hl) (5(2 - Mz)} =—Y12+ 221,—1Zj,,lz—l,—ﬁ]:%’,gx—z,z-

Similarly as in the independent residuals setting, we can take the two dimension unit variance
random variable to see that this will not coincide in general with the covariance p. Indeed, in this

case, o
Cov(X!, X?) = —p+2p°.

We notice that when the covariates are independent, the method with either independent or equal
individual residual works. However, this is not the general case, therefore, in the next section we
propose a methodology to correct this issue.

4.2.2 Sequential Conditional Independent Pairs with CPI sampling

We have observed that these knockoffs preserve all the required properties except the relationship
between the knockoffs. This is because they were constructed in parallel and independently, without
any guarantee to preserve their covariance. One possible solution could be to construct the knockoffs
with this sampling step but in a sequential manner, ensuring that the exchangeability between
the knockoffs is maintained. Algorithm 1, known as the Sequential Conditional Independent Pairs
(Algorithm 1 of ( )), presents this idea of sequential construction.
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Algorithm 1 Sequential Conditional Independent Pairs

Input: An observation X, a conditional sampler
Output: A valid knockoff X
for j =1topdo

Sample X from £ (Xj
end for

)

Algorithm 2 Sequential Conditional Independent Pairs with CPI sampling

1: Input: A matrix X and a train data set Dirain
2: Output: A valid knockoff X
3: for j=1to pdo o
4: Regress Xi .. from X J. thr;;ll to construct v_; with Diyain
5: Permute the residuals and add them to the regression:
~ . s o~ . s o~ perm
X =7 (X—J,Xl-J—l) + (XJ —D (X—J,X1~J—1))
6: Construct the train knockoff using other permutation of the test residuals:
~ . s S169-1 . . i o161 perm
X“]crain =V_j (Xtr;in’Xtr;in ) + (XJ —V—j (X J7X ! ))
7: end for

Moreover, they have proven exchangeability of the knockoffs with this procedure. We could adapt
the sampling step to introduce the conditional permutation step to deal with the usual covariance
matrix estimation problems in high-dimensional settings. Therefore, in practice, the algorithm could
be rewritten as Algorithm 2.

We observe that the validity of this method relies on the ability to sample from the conditional
distribution including the already generated knockoffs. To prove that our algorithm works under
the Gaussian assumption, we only need to reuse Lemma 3.1 to show that, since it is a Gaussian
vector, the conditional distribution can be rewritten as the sum of the regressed part (which is
fixed) and a centered Gaussian with the correct covariance matrix, which is precisely given by the
residuals distributions. Thus, the only remaining step would be to adapt Proposition 3.3 to this case,
demonstrating that using a consistent estimate ensures the empirical distribution converges to the
conditional distribution.

We observe that there is a trade-off involved in this algorithm: we sacrifice the computational
advantage of parallel computation of each knockoff in order to achieve the theoretical guarantees of
the sequential version. In practice, we could just consider the version presented by ( )
as they have demonstrated good empirical results with this approach.

4.3 Shapley-Knockoffs: FDR control using knockoffs

In this section, we present a method that controls the FDR by leveraging the theoretical results
on the sampling step of the CPI, as discussed in this document, and the knockoff framework. This
approach incorporates concepts from the game-theoretic variable importance measure, Shapley values
(see Section 2.2), and addresses issues commonly encountered in high-correlation settings. It does so
by considering the multiple relationships between the variable of interest and the other variables,
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rather than the every variable vs. every variable excluding the studied one approach used in LOCO
and CPI methods.

First, notice that as proven in the previous section, Algorithm 2 provides valid knockoffs under
Gaussian assumption. By defining a vector W = (W7, ..., W,) where each coordinate j is given by

W = w (X, X)9) 1= (y = (X))~ (g~ w0,

where X is the vector X with the j-th coordinate is replaced by its knockoff )Afj, we observe that
it is a function of the input, the knockoff and the output. Then, we observe that it satisfies the
flip-sign property:

' ~ B wj([X,)?},y) if j # s,
wj([X’XLwap(S)’y) a fwj({X,f(},y) if j =s,

for s € {1,...,p}. However, to fulfill Definition 4.2, this property must hold for any subset s, not
just those of size 1. Therefore, to leverage the knockoffs framework for FDR control, we need to
modify the statistic to ensure its validity. One idea is to realize that with the current statistic, we are
comparing the accuracy of the method by disabling the current coordinate without accounting for its
relationship with the other coordinates. This is similar to the difference between LOCO and Shapley
measures. Thus, the idea is to disable all covariates except the one being studied in a combinatorial
way that satisfies the exchangeability property outlined in Definition 4.2. More formally, we define
the Shapley-statistic as:

Definition 4.3 (Shapley-statistic). It is the vector Wgpap,, where each coordinate Wghap is given by
W = > (y— (. X)) = (g — et X))

wle{Xl,il}><<~-><JJPG{XP7)ZP}

Therefore, using Shapley-Knockoffs will involve sampling the Knockoffs using the sequential
algorithm presented in the previous section and applying the Shapley statistic to determine the
importance of each covariate. We can easily recover the FDR-control of the procedure using the
standard Knockoffs framework of ( ):

Proposition 4.4 (FDR-control of the Shapley-Knockoffs). Under Assumption 2 and assuming
the consistance of the regressors m and U_; for each j € {1,...,p}, the procedure that consists on
computing the Knockoffs following Algorithm 2 and using the standard Knockoffs threshold Ty defined
in (17) on the Shapley-statistic from Definition 4.3, controls the FDR at level q.

Proof. In order to establish FDR control using Theorem 3.4 from ( ), we need two
main ingredients: first, the exchangeability of the knockoffs, and second, the validity of the Shapley
statistic. The first was established in the previous section using the proof of Sequential Conditional
Independent Pairs (Algorithm 1 from ( )). This relies on the ability to sample from
the conditional distribution sequentially. This is achieved through Assumption 2, which allows us to
express the conditional distribution as the sum of two independent random variables, specifically
the regressed part and the residuals. To address empirical error, we rely on the consistency of the
regressors.
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To proof the validity of the Shapley statistic we need to proof that the properties of Definition 4.2
are preserved. To see this, we first observe that
Wéhap = wj([X7 X]: y)
= > (y—m(z', .. X7, aP)? = (y—m(zt, ..., X7, ... 2P))?,
zle{X1,X}x..xzPe{XP Xr}

therefore, it is obviously a function of the input X, the knockoff X and the output y. Then, to prove
the flip-sign property, we first observe that for any subset s C {1,...,p}, and for any [ € s,1 # j we
have that

W ([X7 jz]swap(s% y) = wj([X7 jz]swap(s\l)v Z/)

because of the commutativity of the sum and because z! € { X!, )?l} is equivalent to z! € {)?ﬂ X4
Therefore, we could proceed in this way to discard all the covariates from s but the j-th covariate.
It the j-th covariate is s, then we can easily observe the antisymmetry property because of the
antisymmetry of the subtraction. Therefore, we have that

W X if jes
R i (x| y) e,
Wi ([X’ X} swap(s) ,y) B —ij ({X, )ﬂ ,y) ifjes.

Finally, we conclude that combining all the previous results and using the framework from
( ), FDR control is guaranteed.
|

In practical terms, however, it shares the same combinatorial challenges as the Shapley values.
Nonetheless, there are several ways to avoid computing all combinations by leveraging solutions
from the Shapley values literature. Some were already discussed in Section 2.2. For example,

( ) proposed addressing this issue through Monte-Carlo approach using importance
sampling. Future research will focus on developing this method further and studying its performance
in correlated settings.

In the following section, we will present another procedure that also controls the FDR, but without
directly entering the knockoff framework, unlike the Shapley-knockoffs. Moreover, this procedure will
focus uniquely on comparing every variable vs. every variable excluding the studied one, rather than
considering all the relationships accounted for in the Shapley-knockoffs.

4.4 CPI-Knockoffs: FDR control via approximate knockoffs

In this section, we refer to the original CPI framework, where the conditional sampling of each
covariate can be done independently and, therefore, in parallel. Given a trained model m, for each
coordinate j, we compare the performance of the model when predicting the output using the original
input, and when using the input where the j-th covariate is conditionally independent of the rest.
At first sight, it may seem similar to the holdout randomization test framework (see

( )), which is an specific conditional randomization test (see ( )) that
has the advantage of requiring only a single model refit. In this approach, an importance statistic
T(X,Y,0) is constructed using both the original test data T* = T'(Xiest, Yiest, ¢) and modified test

data T = T()Aft(is)t o Y;est,é) for k € {1,...,K},j € {1,...p}, where the j-th covariate is replaced
by a generated null sample K times. Therefore, this null-generated importance statistic is created

multiple times, and a p-value is computed based on the empirical CDF of the null test statistic.
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For instance, FLOWSELECT ( ( )) employs normalizing flows for density
estimation and then utilizes an MCMC-based procedure to sample from the conditional distribution,
which is used to generate each null statistic. However, after this process, they construct p-values,
and to control the FDR, they rely on standard assumptions, such as those needed for the BH
methodology( ( )). Moreover, as other normalizing flows methods, its accuracy relies on
the normalizing flows, which need a lot of training samples to estimate and sample from the density.

In contrast, our methodology diverges from this framework. Although we also sample from
the conditional distribution using the CPI sampling methodology and we construct an importance
statistic via the squared error, we do not require assumptions on p-values. This is because we leverage
the knockoff framework, avoiding the strong PRDS assumptions that may not be met in conditional
inference approaches.

Compared to the original CPI framework presented in ( ), instead of controlling
the type I error, we aim to control the FDR. The goal of controlling the FDR (16) is to ensure that,
in the selected set, most of the covariates belong to the desired predictive set. This differs from
type I error guarantees, which control the probability of incorrectly rejecting the null hypothesis for
each covariate individually. This approach does not perform well with high-dimensional data, as
the number of false positives increases significantly due to the variability of the random variables
(see ( )). Moreover, the CPI presented in ( ) relies on its asymptotic
convergence to a Gaussian random variable to provide type I error control, whereas this method
could offer finite-sample FDR guarantees.

We recall that XU) stands for the vector where all the coordinates are equal to X but the
j-th coordinate that is conditionally independent. We also denote by X the vector in which each
coordinate is the conditionally independent sample.

In this context, we begin by defining the CPI statistic Wpr, which is inspired by the knockoff
statistics and measures the importance of each coordinate.

Definition 4.5 (CPI-Statistic). Given X for each coordinate j, we define the CPI-Statistic Wcpy
as the vector where each coordinate j is given by
~ ) ~\ 2
Weri(X, X,y) = (y = (X)) = (y = i(X))*.

As discussed in Section 4.2, this approach does not directly fit within either the model-X knockoff
framework or the original knockoff framework, as the vector X is not a knockoff. Neither the flip-sign
property of the knockoff statistic is satisfied. However, it is not necessary for controlling the FDR.

Indeed, as shown in ( ), we only need to prove that, conditionally on the
magnitude, the sign of the null covariates is i.i.d, or equivalently, that given ¢ € {£1}¢ a sign sequence
iid

independent from Wegpr, with €/ = 1 for the non-null coordinates and €’
Rademacher variables for the null coordinates, then

~ {£1} independent
W o wh LWL W,
To guarantee this, we assume that the difference between the predictions of X and X0 satisfies
the sign-flip property.

Assumption 4 (Sign-flip difference). Given m a regressor of Y given X, for all the null covariates j,
we have

X)) — (X D) ~ ¢ (m(X) - m()}‘(j))) .

with €/ an Rademacher distribution independent from the rest.
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We first observe that if we had the theoretical regressor m, the difference would be exactly 0
since it does not depend on the null covariates (see Lemma 1.2 and Definition 1.1 ). Therefore, this
difference can be viewed as an optimization error due to the variability of the covariates. Next,
we note that it is a difference between two random variables that, conditionally on X 7, are i.i.d.,
making the difference between them exchangeable. We are going to prove it in the linear setting.

example 4.6 (Linear model). For instance, the linear model satisfies this property. To see so, we
first note that m(X) = BTX. Therefore, m(X) —m ()?(j)) = pi (Xj = X’(j)j). We note that as

stated before, as the regressor improves its accuracy, the 37 — 0 for the null covariates, so that this
difference tends to 0.
Given € € {1} a vector of i.i.d. Rademacher variables, we are going to prove that

(m(X) R (S((l)) LX) = ()?<d>)) d (61 (m(X) — R (;?(D)) s (m(X) PN ()?(d)))) 7

which also proofs the property when restricted to the null covariates.
Using the linear assumption, we only need to prove that

(Xl _xmr o xd )~(<d>d) 4 (el (Xl _ X“)l) e (Xd _ )?W)d)) .
We start by noticing that for any j,
XX = X)(E[X7|X 7] + X7 —E[X"7|X'77]) = (X! - E[X’|X 7)) - (X" —E[X7|X"]),

with X' independent from X. Therefore, each coordinate is independent from the rest. Indeed, X is
independent from X' and by using the regression model assumption (Assumption 3), X7 —E [Xj|X’j]
is independent of X 7. To sum up, taking arbitrarily the first coordinate X! —)?(1)1, it is independent
from the rest of coordinates and it can be decomposed as (X'—E [X'|X1])— (X" —E [X"'X'71]), so
it is a difference of two i.i.d. random variables so we can multiply it with an independent Rademacher
variable giving the result.

Even though this assumption may seem strong, it is easily satisfied in practice. Graphically, we
can observe that each coordinate of the vector is symmetrically centered at zero. For example, as
shown in Figure 16, we test this assumption in a more complex setting.

We also observe that, even though this property is satisfied for both important and unimportant
covariates, if the regressor is consistent, this quantity will vanish for the unimportant covariates, but
not for the important ones. This is seen in the histograms 8 and 12 as the scale of the important
covariates is larger than the ones of the unimportant ones. This is the property that will be exploited
to effectively detect the null covariates.

Finally, we establish control of the FDR for the proposed method by leveraging the knockoffs
framework.

Theorem 4.7 (FDR-control on the CPI). Under Assumption 3 and Assumption 4, using the knockoff
threshold (17) on the Wepi, the FDR of the CPI procedure is controlled.

Proof. We only need to prove
1 d d /11771 dyrrd
(Weprs -+ Wepr) = (6 Weprs - -+, € Wepr),

with €/ = 1 if j is genuine and an independent Rademacher otherwise. After that, we can conclude
using the exact same proof of Theorem 1 and 2 of ( ). We observe that this
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is equal to prove that each null coordinate is equally distributed to its opposite, i.e. Wépl 4 *Wépl

for j € Ho. We begin by decomposing each null coordinate:
Wi = (¥~ a(X9))" — (v —a(X))?
= ()?<J’>)2 — (X)? - 2V (X(ﬁ) + 2V A(X)
= (m (X9) = m(0) ((X) + 7@ (X)) +2v
- (m ()ZU)) - m(X)) (m(X)

We observe that using Assumption 4 we have

>
>
|

>
/N
ol
=
N——

+
_|_

o ()?U)) — X)L m(x) - m ()?U)) .

We conclude by using the commutativity of addition and repeating the same steps in reverse to
recover —Wlpr. O

We observe that under this knockoff framework, rather than simply controlling the asymptotic
type-I error provided by the CPT (see ( )), we can guarantee the control in finite
distance of the FDR.

We observe that this result pertains only to the accuracy of each knockoff draw. There is a need
to aggregate the knockoffs to obtain more robust results ( ( )). Notably, by reusing
the same proof, we can extend the guarantees to the mean, rather than just the accuracy of each
individual. This is what we study in practice. Other methods of aggregating individual knockoffs

will be considered in future research. For instance, the quantile aggregation ( )
of to aggregate the individuals to create a p-value from the empirical CDF distribution as in the
Holdout Randomization Test ( ( ).

4.5 Experiments on the power of the statistic

In this section, we study the performance of the method in identifying important covariates. To do
so, we first plot histograms of m(X) — m (X)) for each covariate j, verifying that they are centered
and symmetric, thus fulfilling Assumption 4. To test it more formally, a Kolmogorov-Smirnov test
was also done. We observe that the main difference between null and non-null covariates is reflected
in the variance of the histogram. Next, we plot the error for each individual when predicting with
the modified input. Typically, the error increases more when important covariates are modified (red
crosses). We observe that there is often significant variability, so we average the accuracy across
the samples to achieve more robust results. In these figures, we see that the red crosses are clearly
separated from the blue dots, demonstrating the power of this method. Finally, we plot histograms
of the error increase caused by modifying the null covariates. We observe that these errors are highly
concentrated around 0, showing the strength of the method, and that the histograms are symmetric,
providing numerical evidence for Theorem 4.7, which provides the FDR control by applying the
threshold presented in ( ).

In practice, we use complex and lengthy methods to train the model m to explain y given X,
but we employ simpler and faster methods to compute each U_; for sampling from the conditional
distribution X@. For all methods, we use a training sample of n = 1000, with 700 used to train
the models m and D_; for each j, and 300 used to obtain residuals to compute the conditional
distributions, and calculate the statistic.
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Linear setting: the relationship between y and X is linear and the dimension is fixed to d = 500.
The correlation between the coordinates of X is a p Toeplitz matrix, i.e. the correlation between the
coordinates i and j is pl*~7. We fix p = 0.6.

In Figure 8 we can observe that Assumption 4 is satisfied. This was also done more formally
using a two-sample test, comparing this data with randomly sign-flipped data, which determined
that we could not reject the hypothesis that they came from the same distribution.

We observe that the first row, consisting of the important covariates, exhibits much higher
variability than the second row. This property provides the discriminatory power of our method.

Sign-flip difference assumption in a linear setting
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Figure 8: Setting: y = Xy — X1 4+ 2Xo + X3 — 3X4, Ngrain = 700, ntest = 300 and d = 500. Each
plot corresponds to a specific coordinate. Thus, each histogram represents the distribution of the
difference between the model’s prediction using a test individual and using the same individual with
the covariate conditionally independently sampled.

In Figure 9, we observe that the red crosses generally stand out from the blue points, but due to
the variability among individuals, there are instances where they overlap. However, in Figure 10,
where the test individuals have been aggregated, there is a clear distinction between the red crosses
and the blue points.

In Figure 11, we observe that the error difference is centered at 0 and symmetric, providing
a numerical example of Theorem 4.7. Additionally, the fact that it is so concentrated around 0
highlights the power of this method, as all important covariates will exhibit a greater difference,
enabling the perfect recovery of the relevant covariates.

High-dimensional linear setting: In this experiment we recover the same structure for the
dependence between the covariates and the same number of samples, but we take a dimension
d = 5000. The same models are used to fit the data, therefore the accuracy is worse than in the
previous setting. Nevertheless, the important covariates are still separable from the null ones as we
will see in Figure 14.

In Figure 12, as before, we can observe that Assumption 4 is satisfied. This was also done
more formally using a two-sample test, comparing this data with randomly sign-flipped data, which
determined that we could not reject the hypothesis that they came from the same distribution.

In Figure 13, we observe that the red crosses generally stand out from the blue points, but due
to the variability among individuals, there are instances where they overlap.However, in Figure 14,
where the test individuals have been aggregated, the distinction between the red crosses and the blue
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Approximate-knockoff statistic for 10 observations in a linear setting
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Figure 9: Setting: y = X — X1 +2Xo + X3 — 3X4, Ntrain = 700, nest = 300 and d = 500. Each plot
represents an individual. On the x-axis, we have the prediction error made on the individual, and on
the y-axis, the error made by changing a coordinate using a conditionally independent sample. The
red crosses stand for the relevant covariates and the blue dots for the null covariates.

points becomes clearer. Although the model is less accurate than in the previous setting, giving the
impression of some overlap, the augmented figure on the right shows that this is not the case, and
they remain separable.

In Figure 15, we observe that the error difference is centered at 0 and symmetric, providing
a numerical example of Theorem 4.7. Additionally, the fact that it is so concentrated around 0
highlights the power of this method, as all important covariates will exhibit a greater difference,
enabling the perfect recovery of the relevant covariates. We also note that as the model is not
accurate, the variability is lightly increased compared to the first setting.

Non-linear setting: In this case we take a non-linear relationship between the output y and the
input X, given by y = XoX11x,>0 + 2X3X41 x,<0. The correlation between the input covariates is
preserved as before by a Toeplitz matrix with p = 0.6. The input covariates are centered in 1. The
training and test sample is of the same size as before. We used the same models to fit the data as
before.

First, we note from Figure 16 that the symmetry required by Assumption 4 is fulfilled. Second,
we observe that the histograms of the first and second covariates are much more spread out compared
to the other three important covariates. As shown on the left of Figure 18, these covariates are
therefore more easily differentiated from the null covariates than the other important covariates.
However, all the important covariates remain separable from the null ones. We note that this is
because, in the relationship between the input and the output, although the second part of the sum
has a higher coefficient, the indicator function will be 0 more often than in the first part, as the
covariate Xs is centered at 1.

In Figure 17, we observe that the red crosses generally stand out from the blue points, but
due to the variability among individuals, there are instances where they overlap, mostly for Xs, X3
and Xy. However, in Figure 14, where the test individuals have been aggregated, there is a clear
distinction between the red crosses and the blue points. On the right we have the augmented figure
for readability of the result.

In Figure 19, we observe that the error difference is centered at 0 and symmetric, providing
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Averaged approximate-knockoff statistic in a linear setting
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Figure 10: Setting: y = Xg — X7 + 2Xo + X35 — 3Xy, Ngrain = 700, ntest = 300 and d = 500.
It represents the mean of the errors made across the individuals. On the z-axis, we have the
mean prediction error, and on the y-axis, the mean error made by changing a coordinate using a
conditionally independent sample. The red crosses stand for the relevant covariates and the blue
dots for the null covariates.

a numerical example of Theorem 4.7. Additionally, the fact that it is so concentrated around 0
highlights the power of this method, as all important covariates will exhibit a greater difference,
enabling the perfect recovery of the relevant covariates. We observe that, since this data setting is
more challenging, the histogram is more spread out compared to the other two cases.

5 Conclusion/ Perspectives

5.1 Conclusions

This work has reviewed the most widely used methods for measuring variable importance. First, we
observe that although removal-based approaches, such as LOCO and Shapley values, may provide
theoretically desirable quantities, they suffer from practical limitations that make them difficult
to implement. On the other hand, while permutation-based approaches offer good stability and
computational feasibility, they do not directly compute any theoretically desired quantities. To
address this, we have established a connection between conditional permutation importance and
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Null covariates approximate-knockoff statistic distribution in a linear setting
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Figure 11: Setting:y = Xo — X7 4+ 2X5 + X3 — 3X4, Ngrain = 700, nesty = 300 and d = 500. It
represents the histogram of the mean of difference between the errors made across the individuals by
using the original and a conditionally independent sample on the null covariates.

LOCO, resulting in a stable estimate of LOCQO. This was achieved by identifying a theoretical
framework where the conditional sampling step is valid. Additionally, we introduced an aggregated
version of this estimate, which adds no computational complexity but may help mitigate extrapolation
issues.

In the context of controlled variable selection, we also presented an algorithm that leverages the
previously established theoretical framework for conditional sampling to produce valid knockoffs.
We then introduced a Shapley-based statistic that accounts for all predictive relationships across
subsets, integrating directly into the knockoff framework and providing False Discovery Rate control
for the selected subset. The main drawback of this knockoff algorithm is its sequential nature, which
looses the parallelizability of the CPI. To overcome this limitation, we introduced a CPI-based
method that, while not directly part of the knockoff framework, also provides FDR control and
is parallelizable. This method enhances the statistical control of CPI under mild assumptions,
and in practice, its discriminatory power depends on the accuracy of the trained model. By using
consistent estimates, this approach offers a powerful methodology that separates the true signal
from optimization errors. Moreover, it does not directly fit within the Holdout Randomization Test
framework, but still provides the same statistical guarantees without requiring the strong dependency
assumptions between p-values, which do not align well with conditional approaches.
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Sign-flip difference assumption in a high-dimensional linear setting

- Covariate 1 Cavariate 2 Covariate 3 Covariate 4 Covariate 5
206
® 0.6
5 0o 0z 02
204 .
I 04
fo2 o o} 02 o1
S
a
E 00 oo 0o 0.0 o
-5 [ 5 -5 0 5 -5 0 5 -5 [ 5 -5 0
4 Covariate 6 Caovariate 7 Covariate 8 Covariate 9 Caovariate 10
53 3 3 3 3
5
g
- 2 2 z 2 2
£
£
51 1 1 1 1
a
E
€0 0 0 0 o
> -5 0 5 =5 0 5 -5 0 5 -5 4 5 -5 0 5
x| = mixV)

Figure 12: Setting: y = Xg — X7 + 2X5 + X3 — 3X4, Nrain = 700, ntest = 300 and d = 5000.
Each plot corresponds to a specific coordinate. Each histogram represents the distribution of the
difference between the model’s prediction using a test individual and using the same individual with
the covariate conditionally independently sampled.

5.2 Perspectives

Much work remains to build on the presented advances, particularly in practical applications to
demonstrate the benefits of the proposed methods. For instance, future work will compare the CPI-
knockoff with the current state-of-the-art method, as presented in Candes et al. (2017), which uses
the difference between the LASSO coeflicients of the original covariate and its knockoff counterpart
as the test statistic. This approach primarily works in linear settings. However, our proposed method
should also work in non-linear contexts, as it relies on the performance of the model m. With a
sufficiently flexible and well-trained model, we should be able to efficiently recover the true signal.

Additionally, following the work of Blain et al. (2023), instead of focusing on controlling the False
Discovery Rate, we aim to control the False Discovery Proportion, which offers stronger statistical
guarantees. After all, we are less concerned with controlling the average False Discovery Proportion
across multiple datasets and more interested in having theoretical guarantees for the selected set in
our specific dataset.

Moreover, while we have aggregated the CPI-knockoffs by simply averaging, other possible
methods of aggregation are available (see Nguyen et al. (2020)). Future research will explore these
alternatives to potentially improve the performance of the method.

Finally, it is also worth noting that when dealing with highly correlated covariates, it may be
beneficial to consider groups of covariates rather than individual ones. For example, in brain imaging,
instead of analyzing each voxel independently, it may be more appropriate to consider regions of
voxels. This approach aligns with the issue of having highly correlated covariates, where none is truly
important because the other one is available, but they are jointly important. This also relates to the
critic on the axioms of the Shapley values, which assume linearity across subsets, implying that the
importance of two covariates should equal the sum of their individual importances.
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Approximate-knockoff statistic for 10 observations in a high-dimensional linear setting
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Figure 13: Setting: y = Xg — X7 + 2Xo + X3 — 3X4, Ntrain = 700, ntesy = 300 and d = 5000. Each
plot represents an individual. On the z-axis, we have the prediction error made on the individual,
and on the y-axis, the error made by changing a coordinate using a conditionally independent sample.
The red crosses stand for the relevant covariates and the blue dots for the null covariates.
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Figure 16: Setting: y = X1 Xolx,>0 + 2X4X51x,<0, Ntrain = 700, ntest = 300 and d = 5000. Each
plot corresponds to a specific coordinate. Thus, each histogram represents the distribution of the
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the covariate conditionally independently sampled.
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Approximate-knockoff statistic for 10 observations in a non-linear setting
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Figure 17: Setting: Yy = X1X2]lX3>0 + 2)(4*)(5]1)(3<07 Ntrain = 7007ntest = 300 and d = 500. Each

plot represents an individual. On the x-axis, we have the prediction error made on the individual,
and on the y-axis, the error made by changing a coordinate using a conditionally independent sample.
The red crosses stand for the relevant covariates and the blue dots for the null covariates.

Averaged approximate-knockoff statistic in a non-linear setting
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Figure 18: SEttlng Yy = X1X2]1X3>0 + 2)(4)(5]1X3<0a Ntrain = 7007 Ntest = 300 and d = 500. It

represents the mean of the errors made across the individuals. On the z-axis, we have the mean
prediction error, and on the y-axis, the mean error made by changing a coordinate using a conditionally
independent sample. The red crosses stand for the relevant covariates and the blue dots for the null
covariates.
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Null covariates approximate-knockoff statistic distribution in a non-linear setting
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Figure 19: Settlngy = X1X2ﬂX3>0 + 2)(4AX751LX3<07 Ngrain = 100, Ngesy = 300 and d = 500. Tt
represents the histogram of the mean of difference between the errors made across the individuals by
using the original and a conditionally independent sample on the null covariates.
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A Some explicit LOCO examples

example A.1 (LM with two Gaussian covariates). Given two Gaussian coviates Xy and X, with
a correlation p we note that under the linear model setting Y = By Xo + 51X1 + ¢, LOCO can be
expressed as
Yroco(d, Po) = E [(m(X) —m_;(X7))?]
= BE[(X7 - E [X7|X])?]

— 528 |0 - B [x7] - S ey~ (x)
=82 (V(Xj) I Covélf;)g)_j) V(X I) — Q_Cové/)((;(v)f)_]) )

2 j P
=65 V(X)) - — | .
3 (Vo) - )
example A.2 (Explicit LOCO in a non-linear setting). In this ezample we will recover the example of
no-linear setting from ( ) but changing the input covariance matriz to obtain more
complex relationships between the covariates. Indeed, we will have y = a X X1 y25o+BX3X 41 x2 -,
where X is p-dimensional centered Gaussian with a Toeplitz covariance matriz where the i, j-th entry
is given by pl*=Il. In this setting, we are going to compute the LOCO for the covariate X°.
First, we observe that

m_o(X%) =E [m(X)|X°] = aE [X°|X %] X L x200 + BX* X 1 x2 .
Then, we can develop LOCO as

Yroco(0, Py) = E [(m(X) — m_o(X%))?]
= E |(aX Lxzs0 (X° ~ E [X°[X°]))’]
= 0B [(X")*1x250 (X° — E[X°|X )’
= %E [(X")?x20] B[ (X° = E[X°|X])°] . (using X° ~E[X°|X~] 1 X°)
The first term is exactly 31.1/2. To see this, we first observe that as the covariates are centered
and symmetrical, then E [(X')?*1x250] = E [(X')?1x2<0]. Therefore, we have that
L =E[X'-E[X'])’] =E[(X")?] =E[(X")*(1x,50 + Lx,<0)] = 2E [(X")*1x,>0] ,
where we have used that & [Xl} = 0. We also observe that as it is a Toeplitz matriz, Y11 = 1. Then,
Yroco(0,Py) = o?/2E [(XO —E [XO\Xfo})Q} = a?/2E [V(X°|X~%)]. Note that as it a Gaussian
vector, the variance is exactly Xo0 — 20,702:3’,0270,0- We also observe that as it is a Toeplitz

matriz, we have the property that ¥_o o = pX_o1 = pX_0,—0(1,0,... ,O)T, Thus, we can develop the
last term as

E [V(X°|X™%)] =00 — Zo,—0529,_0E-0,0
=1-pSo,-025_¢Z-0,-0(1,0,...,0)"
=1-p% _o(1,0,...,0)"
=1-p%
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Combining the previous, we conclude that, in this setting, ¥r.oco(0, Po) = (1 — p?)/2. Similarly, for
the first covariate we obtain Vroco(1, Po) = p?/2(1 — 217_12:}7_12_171).
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